K11a25: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 25 | |
k = 25 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-1,3,-7,4,-2,5,-8,6,-3,7,-10,8,-11,9,-5,10,-6,11,-9/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-1,3,-7,4,-2,5,-8,6,-3,7,-10,8,-11,9,-5,10,-6,11,-9/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
| Line 58: | Line 58: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 25]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 25]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 02:02, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8493 X12,5,13,6 X2837 X18,10,19,9 X20,11,21,12 X6,13,7,14 X10,16,11,15 X22,18,1,17 X14,19,15,20 X16,22,17,21 |
| Gauss code | 1, -4, 2, -1, 3, -7, 4, -2, 5, -8, 6, -3, 7, -10, 8, -11, 9, -5, 10, -6, 11, -9 |
| Dowker-Thistlethwaite code | 4 8 12 2 18 20 6 10 22 14 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^4+6 t^3-18 t^2+33 t-39+33 t^{-1} -18 t^{-2} +6 t^{-3} - t^{-4} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8-2 z^6-2 z^4-z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 155, 2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+4 q^7-9 q^6+16 q^5-22 q^4+25 q^3-25 q^2+22 q-16+10 q^{-1} -4 q^{-2} + q^{-3} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-11 z^4 a^{-2} +7 z^4 a^{-4} -z^4 a^{-6} +3 z^4-12 z^2 a^{-2} +9 z^2 a^{-4} -2 z^2 a^{-6} +4 z^2-5 a^{-2} +4 a^{-4} - a^{-6} +3} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^{10} a^{-2} +2 z^{10} a^{-4} +7 z^9 a^{-1} +14 z^9 a^{-3} +7 z^9 a^{-5} +19 z^8 a^{-2} +21 z^8 a^{-4} +10 z^8 a^{-6} +8 z^8+4 a z^7-6 z^7 a^{-1} -14 z^7 a^{-3} +4 z^7 a^{-5} +8 z^7 a^{-7} +a^2 z^6-55 z^6 a^{-2} -52 z^6 a^{-4} -12 z^6 a^{-6} +4 z^6 a^{-8} -18 z^6-8 a z^5-11 z^5 a^{-1} -17 z^5 a^{-3} -26 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+50 z^4 a^{-2} +43 z^4 a^{-4} +5 z^4 a^{-6} -5 z^4 a^{-8} +15 z^4+5 a z^3+11 z^3 a^{-1} +21 z^3 a^{-3} +23 z^3 a^{-5} +7 z^3 a^{-7} -z^3 a^{-9} +a^2 z^2-24 z^2 a^{-2} -18 z^2 a^{-4} -z^2 a^{-6} +2 z^2 a^{-8} -8 z^2-a z-3 z a^{-1} -6 z a^{-3} -6 z a^{-5} -2 z a^{-7} +5 a^{-2} +4 a^{-4} + a^{-6} +3} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^8-2 q^6+4 q^4-q^2+4 q^{-2} -6 q^{-4} +4 q^{-6} -4 q^{-8} + q^{-10} +2 q^{-12} -3 q^{-14} +5 q^{-16} -2 q^{-18} + q^{-22} - q^{-24} } |
| The G2 invariant |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a25"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^4+6 t^3-18 t^2+33 t-39+33 t^{-1} -18 t^{-2} +6 t^{-3} - t^{-4} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8-2 z^6-2 z^4-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 155, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+4 q^7-9 q^6+16 q^5-22 q^4+25 q^3-25 q^2+22 q-16+10 q^{-1} -4 q^{-2} + q^{-3} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-11 z^4 a^{-2} +7 z^4 a^{-4} -z^4 a^{-6} +3 z^4-12 z^2 a^{-2} +9 z^2 a^{-4} -2 z^2 a^{-6} +4 z^2-5 a^{-2} +4 a^{-4} - a^{-6} +3} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^{10} a^{-2} +2 z^{10} a^{-4} +7 z^9 a^{-1} +14 z^9 a^{-3} +7 z^9 a^{-5} +19 z^8 a^{-2} +21 z^8 a^{-4} +10 z^8 a^{-6} +8 z^8+4 a z^7-6 z^7 a^{-1} -14 z^7 a^{-3} +4 z^7 a^{-5} +8 z^7 a^{-7} +a^2 z^6-55 z^6 a^{-2} -52 z^6 a^{-4} -12 z^6 a^{-6} +4 z^6 a^{-8} -18 z^6-8 a z^5-11 z^5 a^{-1} -17 z^5 a^{-3} -26 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+50 z^4 a^{-2} +43 z^4 a^{-4} +5 z^4 a^{-6} -5 z^4 a^{-8} +15 z^4+5 a z^3+11 z^3 a^{-1} +21 z^3 a^{-3} +23 z^3 a^{-5} +7 z^3 a^{-7} -z^3 a^{-9} +a^2 z^2-24 z^2 a^{-2} -18 z^2 a^{-4} -z^2 a^{-6} +2 z^2 a^{-8} -8 z^2-a z-3 z a^{-1} -6 z a^{-3} -6 z a^{-5} -2 z a^{-7} +5 a^{-2} +4 a^{-4} + a^{-6} +3} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a19, K11a281,}
Same Jones Polynomial (up to mirroring, ): {K11a19,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a25"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a19, K11a281,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a19,} |
Vassiliev invariants
| V2 and V3: | (-1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of K11a25. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



