K11a25
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8493 X12,5,13,6 X2837 X18,10,19,9 X20,11,21,12 X6,13,7,14 X10,16,11,15 X22,18,1,17 X14,19,15,20 X16,22,17,21 |
| Gauss code | 1, -4, 2, -1, 3, -7, 4, -2, 5, -8, 6, -3, 7, -10, 8, -11, 9, -5, 10, -6, 11, -9 |
| Dowker-Thistlethwaite code | 4 8 12 2 18 20 6 10 22 14 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+6 t^3-18 t^2+33 t-39+33 t^{-1} -18 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-2 z^6-2 z^4-z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 155, 2 } |
| Jones polynomial | [math]\displaystyle{ -q^8+4 q^7-9 q^6+16 q^5-22 q^4+25 q^3-25 q^2+22 q-16+10 q^{-1} -4 q^{-2} + q^{-3} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-11 z^4 a^{-2} +7 z^4 a^{-4} -z^4 a^{-6} +3 z^4-12 z^2 a^{-2} +9 z^2 a^{-4} -2 z^2 a^{-6} +4 z^2-5 a^{-2} +4 a^{-4} - a^{-6} +3 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10} a^{-4} +7 z^9 a^{-1} +14 z^9 a^{-3} +7 z^9 a^{-5} +19 z^8 a^{-2} +21 z^8 a^{-4} +10 z^8 a^{-6} +8 z^8+4 a z^7-6 z^7 a^{-1} -14 z^7 a^{-3} +4 z^7 a^{-5} +8 z^7 a^{-7} +a^2 z^6-55 z^6 a^{-2} -52 z^6 a^{-4} -12 z^6 a^{-6} +4 z^6 a^{-8} -18 z^6-8 a z^5-11 z^5 a^{-1} -17 z^5 a^{-3} -26 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+50 z^4 a^{-2} +43 z^4 a^{-4} +5 z^4 a^{-6} -5 z^4 a^{-8} +15 z^4+5 a z^3+11 z^3 a^{-1} +21 z^3 a^{-3} +23 z^3 a^{-5} +7 z^3 a^{-7} -z^3 a^{-9} +a^2 z^2-24 z^2 a^{-2} -18 z^2 a^{-4} -z^2 a^{-6} +2 z^2 a^{-8} -8 z^2-a z-3 z a^{-1} -6 z a^{-3} -6 z a^{-5} -2 z a^{-7} +5 a^{-2} +4 a^{-4} + a^{-6} +3 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^8-2 q^6+4 q^4-q^2+4 q^{-2} -6 q^{-4} +4 q^{-6} -4 q^{-8} + q^{-10} +2 q^{-12} -3 q^{-14} +5 q^{-16} -2 q^{-18} + q^{-22} - q^{-24} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{46}-3 q^{44}+8 q^{42}-16 q^{40}+23 q^{38}-28 q^{36}+20 q^{34}+11 q^{32}-66 q^{30}+145 q^{28}-216 q^{26}+228 q^{24}-143 q^{22}-63 q^{20}+357 q^{18}-625 q^{16}+753 q^{14}-615 q^{12}+190 q^{10}+409 q^8-975 q^6+1270 q^4-1120 q^2+547+253 q^{-2} -963 q^{-4} +1286 q^{-6} -1080 q^{-8} +449 q^{-10} +337 q^{-12} -920 q^{-14} +1032 q^{-16} -632 q^{-18} -121 q^{-20} +884 q^{-22} -1316 q^{-24} +1205 q^{-26} -568 q^{-28} -380 q^{-30} +1275 q^{-32} -1781 q^{-34} +1685 q^{-36} -1007 q^{-38} -25 q^{-40} +1032 q^{-42} -1653 q^{-44} +1665 q^{-46} -1082 q^{-48} +174 q^{-50} +693 q^{-52} -1162 q^{-54} +1067 q^{-56} -488 q^{-58} -276 q^{-60} +875 q^{-62} -1027 q^{-64} +679 q^{-66} +6 q^{-68} -720 q^{-70} +1166 q^{-72} -1164 q^{-74} +750 q^{-76} -106 q^{-78} -527 q^{-80} +917 q^{-82} -982 q^{-84} +755 q^{-86} -353 q^{-88} -53 q^{-90} +345 q^{-92} -475 q^{-94} +442 q^{-96} -312 q^{-98} +147 q^{-100} -94 q^{-104} +128 q^{-106} -121 q^{-108} +88 q^{-110} -46 q^{-112} +15 q^{-114} +8 q^{-116} -17 q^{-118} +16 q^{-120} -13 q^{-122} +7 q^{-124} -3 q^{-126} + q^{-128} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a25"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+6 t^3-18 t^2+33 t-39+33 t^{-1} -18 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-2 z^6-2 z^4-z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 155, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^8+4 q^7-9 q^6+16 q^5-22 q^4+25 q^3-25 q^2+22 q-16+10 q^{-1} -4 q^{-2} + q^{-3} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-11 z^4 a^{-2} +7 z^4 a^{-4} -z^4 a^{-6} +3 z^4-12 z^2 a^{-2} +9 z^2 a^{-4} -2 z^2 a^{-6} +4 z^2-5 a^{-2} +4 a^{-4} - a^{-6} +3 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10} a^{-4} +7 z^9 a^{-1} +14 z^9 a^{-3} +7 z^9 a^{-5} +19 z^8 a^{-2} +21 z^8 a^{-4} +10 z^8 a^{-6} +8 z^8+4 a z^7-6 z^7 a^{-1} -14 z^7 a^{-3} +4 z^7 a^{-5} +8 z^7 a^{-7} +a^2 z^6-55 z^6 a^{-2} -52 z^6 a^{-4} -12 z^6 a^{-6} +4 z^6 a^{-8} -18 z^6-8 a z^5-11 z^5 a^{-1} -17 z^5 a^{-3} -26 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+50 z^4 a^{-2} +43 z^4 a^{-4} +5 z^4 a^{-6} -5 z^4 a^{-8} +15 z^4+5 a z^3+11 z^3 a^{-1} +21 z^3 a^{-3} +23 z^3 a^{-5} +7 z^3 a^{-7} -z^3 a^{-9} +a^2 z^2-24 z^2 a^{-2} -18 z^2 a^{-4} -z^2 a^{-6} +2 z^2 a^{-8} -8 z^2-a z-3 z a^{-1} -6 z a^{-3} -6 z a^{-5} -2 z a^{-7} +5 a^{-2} +4 a^{-4} + a^{-6} +3 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a19, K11a281,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a19,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a25"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+6 t^3-18 t^2+33 t-39+33 t^{-1} -18 t^{-2} +6 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ -q^8+4 q^7-9 q^6+16 q^5-22 q^4+25 q^3-25 q^2+22 q-16+10 q^{-1} -4 q^{-2} + q^{-3} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a19, K11a281,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a19,} |
Vassiliev invariants
| V2 and V3: | (-1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a25. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



