K11a139: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 139 | |
k = 139 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,2,-1,3,-9,4,-8,5,-2,6,-11,7,-10,8,-3,9,-4,10,-6,11,-7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,2,-1,3,-9,4,-8,5,-2,6,-11,7,-10,8,-3,9,-4,10,-6,11,-7/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
| Line 58: | Line 58: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 139]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 139]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 01:42, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X16,6,17,5 X18,8,19,7 X2,10,3,9 X20,11,21,12 X22,13,1,14 X8,16,9,15 X6,18,7,17 X14,19,15,20 X12,21,13,22 |
| Gauss code | 1, -5, 2, -1, 3, -9, 4, -8, 5, -2, 6, -11, 7, -10, 8, -3, 9, -4, 10, -6, 11, -7 |
| Dowker-Thistlethwaite code | 4 10 16 18 2 20 22 8 6 14 12 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+5 t^3-12 t^2+20 t-23+20 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-3 z^6-2 z^4+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 99, 2 } |
| Jones polynomial | [math]\displaystyle{ -q^8+3 q^7-6 q^6+10 q^5-14 q^4+16 q^3-15 q^2+14 q-10+6 q^{-1} -3 q^{-2} + q^{-3} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^8 a^{-2} -6 z^6 a^{-2} +2 z^6 a^{-4} +z^6-14 z^4 a^{-2} +9 z^4 a^{-4} -z^4 a^{-6} +4 z^4-14 z^2 a^{-2} +13 z^2 a^{-4} -3 z^2 a^{-6} +5 z^2-4 a^{-2} +5 a^{-4} -2 a^{-6} +2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +3 z^9 a^{-1} +6 z^9 a^{-3} +3 z^9 a^{-5} +6 z^8 a^{-2} +7 z^8 a^{-4} +5 z^8 a^{-6} +4 z^8+3 a z^7-3 z^7 a^{-1} -10 z^7 a^{-3} +z^7 a^{-5} +5 z^7 a^{-7} +a^2 z^6-20 z^6 a^{-2} -21 z^6 a^{-4} -9 z^6 a^{-6} +3 z^6 a^{-8} -10 z^6-9 a z^5-5 z^5 a^{-1} +4 z^5 a^{-3} -12 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -3 a^2 z^4+25 z^4 a^{-2} +29 z^4 a^{-4} +8 z^4 a^{-6} -6 z^4 a^{-8} +7 z^4+7 a z^3+5 z^3 a^{-1} +4 z^3 a^{-3} +17 z^3 a^{-5} +9 z^3 a^{-7} -2 z^3 a^{-9} +2 a^2 z^2-19 z^2 a^{-2} -19 z^2 a^{-4} -4 z^2 a^{-6} +2 z^2 a^{-8} -4 z^2-a z-2 z a^{-1} -3 z a^{-3} -5 z a^{-5} -3 z a^{-7} +4 a^{-2} +5 a^{-4} +2 a^{-6} +2 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^8-q^6+2 q^4-q^2-1+2 q^{-2} -3 q^{-4} +4 q^{-6} - q^{-8} + q^{-10} + q^{-12} -2 q^{-14} +3 q^{-16} - q^{-18} - q^{-24} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{46}-2 q^{44}+5 q^{42}-9 q^{40}+10 q^{38}-10 q^{36}+2 q^{34}+15 q^{32}-34 q^{30}+55 q^{28}-63 q^{26}+50 q^{24}-15 q^{22}-44 q^{20}+112 q^{18}-162 q^{16}+172 q^{14}-120 q^{12}+15 q^{10}+115 q^8-220 q^6+271 q^4-231 q^2+111+47 q^{-2} -192 q^{-4} +253 q^{-6} -214 q^{-8} +98 q^{-10} +53 q^{-12} -158 q^{-14} +179 q^{-16} -114 q^{-18} -25 q^{-20} +168 q^{-22} -258 q^{-24} +232 q^{-26} -109 q^{-28} -77 q^{-30} +265 q^{-32} -369 q^{-34} +357 q^{-36} -226 q^{-38} +23 q^{-40} +189 q^{-42} -339 q^{-44} +362 q^{-46} -257 q^{-48} +90 q^{-50} +97 q^{-52} -207 q^{-54} +215 q^{-56} -124 q^{-58} -9 q^{-60} +126 q^{-62} -179 q^{-64} +133 q^{-66} -18 q^{-68} -116 q^{-70} +219 q^{-72} -235 q^{-74} +174 q^{-76} -60 q^{-78} -77 q^{-80} +175 q^{-82} -225 q^{-84} +203 q^{-86} -128 q^{-88} +34 q^{-90} +55 q^{-92} -112 q^{-94} +129 q^{-96} -112 q^{-98} +72 q^{-100} -24 q^{-102} -18 q^{-104} +39 q^{-106} -46 q^{-108} +39 q^{-110} -24 q^{-112} +12 q^{-114} + q^{-116} -7 q^{-118} +7 q^{-120} -7 q^{-122} +4 q^{-124} -2 q^{-126} + q^{-128} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a139"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+5 t^3-12 t^2+20 t-23+20 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-3 z^6-2 z^4+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 99, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^8+3 q^7-6 q^6+10 q^5-14 q^4+16 q^3-15 q^2+14 q-10+6 q^{-1} -3 q^{-2} + q^{-3} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^8 a^{-2} -6 z^6 a^{-2} +2 z^6 a^{-4} +z^6-14 z^4 a^{-2} +9 z^4 a^{-4} -z^4 a^{-6} +4 z^4-14 z^2 a^{-2} +13 z^2 a^{-4} -3 z^2 a^{-6} +5 z^2-4 a^{-2} +5 a^{-4} -2 a^{-6} +2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +3 z^9 a^{-1} +6 z^9 a^{-3} +3 z^9 a^{-5} +6 z^8 a^{-2} +7 z^8 a^{-4} +5 z^8 a^{-6} +4 z^8+3 a z^7-3 z^7 a^{-1} -10 z^7 a^{-3} +z^7 a^{-5} +5 z^7 a^{-7} +a^2 z^6-20 z^6 a^{-2} -21 z^6 a^{-4} -9 z^6 a^{-6} +3 z^6 a^{-8} -10 z^6-9 a z^5-5 z^5 a^{-1} +4 z^5 a^{-3} -12 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -3 a^2 z^4+25 z^4 a^{-2} +29 z^4 a^{-4} +8 z^4 a^{-6} -6 z^4 a^{-8} +7 z^4+7 a z^3+5 z^3 a^{-1} +4 z^3 a^{-3} +17 z^3 a^{-5} +9 z^3 a^{-7} -2 z^3 a^{-9} +2 a^2 z^2-19 z^2 a^{-2} -19 z^2 a^{-4} -4 z^2 a^{-6} +2 z^2 a^{-8} -4 z^2-a z-2 z a^{-1} -3 z a^{-3} -5 z a^{-5} -3 z a^{-7} +4 a^{-2} +5 a^{-4} +2 a^{-6} +2 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a57, K11a108, K11a231,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a139"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+5 t^3-12 t^2+20 t-23+20 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ -q^8+3 q^7-6 q^6+10 q^5-14 q^4+16 q^3-15 q^2+14 q-10+6 q^{-1} -3 q^{-2} + q^{-3} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a57, K11a108, K11a231,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (1, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a139. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



