K11a140
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X16,6,17,5 X18,8,19,7 X2,10,3,9 X22,11,1,12 X20,13,21,14 X8,16,9,15 X6,18,7,17 X14,19,15,20 X12,21,13,22 |
| Gauss code | 1, -5, 2, -1, 3, -9, 4, -8, 5, -2, 6, -11, 7, -10, 8, -3, 9, -4, 10, -7, 11, -6 |
| Dowker-Thistlethwaite code | 4 10 16 18 2 22 20 8 6 14 12 |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -2 t^3+8 t^2-14 t+17-14 t^{-1} +8 t^{-2} -2 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -2 z^6-4 z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 65, 4 } |
| Jones polynomial | [math]\displaystyle{ -q^9+3 q^8-5 q^7+7 q^6-9 q^5+10 q^4-9 q^3+8 q^2-6 q+4-2 q^{-1} + q^{-2} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^6 a^{-2} -z^6 a^{-4} -4 z^4 a^{-2} -3 z^4 a^{-4} +2 z^4 a^{-6} +z^4-5 z^2 a^{-2} -2 z^2 a^{-4} +5 z^2 a^{-6} -z^2 a^{-8} +3 z^2-2 a^{-2} +2 a^{-6} - a^{-8} +2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +5 z^9 a^{-3} +3 z^9 a^{-5} -z^8 a^{-2} +3 z^8 a^{-4} +5 z^8 a^{-6} +z^8-11 z^7 a^{-1} -21 z^7 a^{-3} -4 z^7 a^{-5} +6 z^7 a^{-7} -13 z^6 a^{-2} -22 z^6 a^{-4} -9 z^6 a^{-6} +6 z^6 a^{-8} -6 z^6+19 z^5 a^{-1} +23 z^5 a^{-3} -10 z^5 a^{-5} -9 z^5 a^{-7} +5 z^5 a^{-9} +29 z^4 a^{-2} +24 z^4 a^{-4} -3 z^4 a^{-6} -7 z^4 a^{-8} +3 z^4 a^{-10} +12 z^4-11 z^3 a^{-1} -5 z^3 a^{-3} +11 z^3 a^{-5} -4 z^3 a^{-9} +z^3 a^{-11} -17 z^2 a^{-2} -5 z^2 a^{-4} +6 z^2 a^{-6} +2 z^2 a^{-8} -z^2 a^{-10} -9 z^2+z a^{-1} -2 z a^{-5} +z a^{-9} +2 a^{-2} -2 a^{-6} - a^{-8} +2 }[/math] |
| The A2 invariant | Data:K11a140/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a140/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a140"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -2 t^3+8 t^2-14 t+17-14 t^{-1} +8 t^{-2} -2 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -2 z^6-4 z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 65, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^9+3 q^8-5 q^7+7 q^6-9 q^5+10 q^4-9 q^3+8 q^2-6 q+4-2 q^{-1} + q^{-2} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^6 a^{-2} -z^6 a^{-4} -4 z^4 a^{-2} -3 z^4 a^{-4} +2 z^4 a^{-6} +z^4-5 z^2 a^{-2} -2 z^2 a^{-4} +5 z^2 a^{-6} -z^2 a^{-8} +3 z^2-2 a^{-2} +2 a^{-6} - a^{-8} +2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +5 z^9 a^{-3} +3 z^9 a^{-5} -z^8 a^{-2} +3 z^8 a^{-4} +5 z^8 a^{-6} +z^8-11 z^7 a^{-1} -21 z^7 a^{-3} -4 z^7 a^{-5} +6 z^7 a^{-7} -13 z^6 a^{-2} -22 z^6 a^{-4} -9 z^6 a^{-6} +6 z^6 a^{-8} -6 z^6+19 z^5 a^{-1} +23 z^5 a^{-3} -10 z^5 a^{-5} -9 z^5 a^{-7} +5 z^5 a^{-9} +29 z^4 a^{-2} +24 z^4 a^{-4} -3 z^4 a^{-6} -7 z^4 a^{-8} +3 z^4 a^{-10} +12 z^4-11 z^3 a^{-1} -5 z^3 a^{-3} +11 z^3 a^{-5} -4 z^3 a^{-9} +z^3 a^{-11} -17 z^2 a^{-2} -5 z^2 a^{-4} +6 z^2 a^{-6} +2 z^2 a^{-8} -z^2 a^{-10} -9 z^2+z a^{-1} -2 z a^{-5} +z a^{-9} +2 a^{-2} -2 a^{-6} - a^{-8} +2 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_25, 10_56,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a9,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a140"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -2 t^3+8 t^2-14 t+17-14 t^{-1} +8 t^{-2} -2 t^{-3} }[/math], [math]\displaystyle{ -q^9+3 q^8-5 q^7+7 q^6-9 q^5+10 q^4-9 q^3+8 q^2-6 q+4-2 q^{-1} + q^{-2} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_25, 10_56,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a9,} |
Vassiliev invariants
| V2 and V3: | (0, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a140. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



