K11a141
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X16,6,17,5 X18,7,19,8 X12,10,13,9 X2,11,3,12 X8,14,9,13 X20,15,21,16 X22,18,1,17 X14,19,15,20 X6,21,7,22 |
| Gauss code | 1, -6, 2, -1, 3, -11, 4, -7, 5, -2, 6, -5, 7, -10, 8, -3, 9, -4, 10, -8, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 16 18 12 2 8 20 22 14 6 |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 2 t^3-11 t^2+24 t-29+24 t^{-1} -11 t^{-2} +2 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ 2 z^6+z^4-2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 103, -2 } |
| Jones polynomial | [math]\displaystyle{ -q^4+4 q^3-7 q^2+11 q-14+16 q^{-1} -16 q^{-2} +14 q^{-3} -10 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^2 a^6+a^6-2 z^4 a^4-4 z^2 a^4-2 a^4+z^6 a^2+2 z^4 a^2+2 z^2 a^2+2 a^2+z^6+2 z^4-1-z^4 a^{-2} -z^2 a^{-2} + a^{-2} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 a^2 z^{10}+2 z^{10}+5 a^3 z^9+10 a z^9+5 z^9 a^{-1} +6 a^4 z^8+5 a^2 z^8+4 z^8 a^{-2} +3 z^8+6 a^5 z^7-6 a^3 z^7-30 a z^7-17 z^7 a^{-1} +z^7 a^{-3} +5 a^6 z^6-5 a^4 z^6-23 a^2 z^6-15 z^6 a^{-2} -28 z^6+3 a^7 z^5-5 a^5 z^5-a^3 z^5+24 a z^5+14 z^5 a^{-1} -3 z^5 a^{-3} +a^8 z^4-5 a^6 z^4-5 a^4 z^4+16 a^2 z^4+15 z^4 a^{-2} +30 z^4-3 a^7 z^3-7 a z^3-2 z^3 a^{-1} +2 z^3 a^{-3} -a^8 z^2+3 a^6 z^2+7 a^4 z^2-3 z^2 a^{-2} -6 z^2+a^7 z+a^5 z+a^3 z+a z-a^6-2 a^4-2 a^2- a^{-2} -1 }[/math] |
| The A2 invariant | Data:K11a141/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a141/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a141"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 2 t^3-11 t^2+24 t-29+24 t^{-1} -11 t^{-2} +2 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 2 z^6+z^4-2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 103, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^4+4 q^3-7 q^2+11 q-14+16 q^{-1} -16 q^{-2} +14 q^{-3} -10 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^2 a^6+a^6-2 z^4 a^4-4 z^2 a^4-2 a^4+z^6 a^2+2 z^4 a^2+2 z^2 a^2+2 a^2+z^6+2 z^4-1-z^4 a^{-2} -z^2 a^{-2} + a^{-2} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 a^2 z^{10}+2 z^{10}+5 a^3 z^9+10 a z^9+5 z^9 a^{-1} +6 a^4 z^8+5 a^2 z^8+4 z^8 a^{-2} +3 z^8+6 a^5 z^7-6 a^3 z^7-30 a z^7-17 z^7 a^{-1} +z^7 a^{-3} +5 a^6 z^6-5 a^4 z^6-23 a^2 z^6-15 z^6 a^{-2} -28 z^6+3 a^7 z^5-5 a^5 z^5-a^3 z^5+24 a z^5+14 z^5 a^{-1} -3 z^5 a^{-3} +a^8 z^4-5 a^6 z^4-5 a^4 z^4+16 a^2 z^4+15 z^4 a^{-2} +30 z^4-3 a^7 z^3-7 a z^3-2 z^3 a^{-1} +2 z^3 a^{-3} -a^8 z^2+3 a^6 z^2+7 a^4 z^2-3 z^2 a^{-2} -6 z^2+a^7 z+a^5 z+a^3 z+a z-a^6-2 a^4-2 a^2- a^{-2} -1 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a12,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a141"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ 2 t^3-11 t^2+24 t-29+24 t^{-1} -11 t^{-2} +2 t^{-3} }[/math], [math]\displaystyle{ -q^4+4 q^3-7 q^2+11 q-14+16 q^{-1} -16 q^{-2} +14 q^{-3} -10 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a12,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-2, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11a141. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



