K11a142
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X16,5,17,6 X18,7,19,8 X12,10,13,9 X2,11,3,12 X20,13,21,14 X22,15,1,16 X6,17,7,18 X8,19,9,20 X14,21,15,22 |
| Gauss code | 1, -6, 2, -1, 3, -9, 4, -10, 5, -2, 6, -5, 7, -11, 8, -3, 9, -4, 10, -7, 11, -8 |
| Dowker-Thistlethwaite code | 4 10 16 18 12 2 20 22 6 8 14 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+5 t^3-8 t^2+10 t-11+10 t^{-1} -8 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-3 z^6+2 z^4+7 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 59, -6 } |
| Jones polynomial | [math]\displaystyle{ q^{-1} -2 q^{-2} +4 q^{-3} -6 q^{-4} +8 q^{-5} -8 q^{-6} +9 q^{-7} -8 q^{-8} +6 q^{-9} -4 q^{-10} +2 q^{-11} - q^{-12} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^4 a^{10}-4 z^2 a^{10}-3 a^{10}+2 z^6 a^8+10 z^4 a^8+14 z^2 a^8+5 a^8-z^8 a^6-6 z^6 a^6-12 z^4 a^6-10 z^2 a^6-3 a^6+z^6 a^4+5 z^4 a^4+7 z^2 a^4+2 a^4 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^3 a^{15}-z a^{15}+2 z^4 a^{14}-z^2 a^{14}+3 z^5 a^{13}-2 z^3 a^{13}+z a^{13}+4 z^6 a^{12}-5 z^4 a^{12}+2 z^2 a^{12}+5 z^7 a^{11}-11 z^5 a^{11}+7 z^3 a^{11}-2 z a^{11}+5 z^8 a^{10}-15 z^6 a^{10}+15 z^4 a^{10}-11 z^2 a^{10}+3 a^{10}+3 z^9 a^9-6 z^7 a^9-6 z^5 a^9+10 z^3 a^9-3 z a^9+z^{10} a^8+3 z^8 a^8-26 z^6 a^8+38 z^4 a^8-21 z^2 a^8+5 a^8+5 z^9 a^7-22 z^7 a^7+27 z^5 a^7-11 z^3 a^7+2 z a^7+z^{10} a^6-z^8 a^6-13 z^6 a^6+28 z^4 a^6-16 z^2 a^6+3 a^6+2 z^9 a^5-11 z^7 a^5+19 z^5 a^5-11 z^3 a^5+z a^5+z^8 a^4-6 z^6 a^4+12 z^4 a^4-9 z^2 a^4+2 a^4 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{36}-q^{34}-q^{30}+q^{28}-q^{26}+q^{24}+q^{22}+3 q^{18}-q^{16}+q^{14}-q^{12}+q^8+q^4 }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{196}-q^{194}+2 q^{192}-2 q^{190}+q^{188}-2 q^{184}+4 q^{182}-5 q^{180}+6 q^{178}-5 q^{176}+2 q^{174}+2 q^{172}-5 q^{170}+9 q^{168}-11 q^{166}+8 q^{164}-7 q^{162}+5 q^{158}-10 q^{156}+14 q^{154}-13 q^{152}+9 q^{150}-4 q^{148}-5 q^{146}+7 q^{144}-10 q^{142}+12 q^{140}-13 q^{138}+14 q^{136}-11 q^{134}+3 q^{132}+8 q^{130}-19 q^{128}+24 q^{126}-25 q^{124}+11 q^{122}+4 q^{120}-20 q^{118}+24 q^{116}-12 q^{114}-8 q^{112}+23 q^{110}-29 q^{108}+14 q^{106}+11 q^{104}-33 q^{102}+46 q^{100}-40 q^{98}+26 q^{96}+8 q^{94}-30 q^{92}+48 q^{90}-46 q^{88}+35 q^{86}-12 q^{84}-9 q^{82}+27 q^{80}-33 q^{78}+30 q^{76}-12 q^{74}-10 q^{72}+24 q^{70}-29 q^{68}+11 q^{66}+13 q^{64}-34 q^{62}+41 q^{60}-33 q^{58}+6 q^{56}+24 q^{54}-44 q^{52}+49 q^{50}-36 q^{48}+11 q^{46}+14 q^{44}-27 q^{42}+30 q^{40}-21 q^{38}+12 q^{36}+q^{34}-6 q^{32}+7 q^{30}-6 q^{28}+4 q^{26}-q^{24}+q^{22} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a142"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+5 t^3-8 t^2+10 t-11+10 t^{-1} -8 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-3 z^6+2 z^4+7 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 59, -6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^{-1} -2 q^{-2} +4 q^{-3} -6 q^{-4} +8 q^{-5} -8 q^{-6} +9 q^{-7} -8 q^{-8} +6 q^{-9} -4 q^{-10} +2 q^{-11} - q^{-12} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^4 a^{10}-4 z^2 a^{10}-3 a^{10}+2 z^6 a^8+10 z^4 a^8+14 z^2 a^8+5 a^8-z^8 a^6-6 z^6 a^6-12 z^4 a^6-10 z^2 a^6-3 a^6+z^6 a^4+5 z^4 a^4+7 z^2 a^4+2 a^4 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^3 a^{15}-z a^{15}+2 z^4 a^{14}-z^2 a^{14}+3 z^5 a^{13}-2 z^3 a^{13}+z a^{13}+4 z^6 a^{12}-5 z^4 a^{12}+2 z^2 a^{12}+5 z^7 a^{11}-11 z^5 a^{11}+7 z^3 a^{11}-2 z a^{11}+5 z^8 a^{10}-15 z^6 a^{10}+15 z^4 a^{10}-11 z^2 a^{10}+3 a^{10}+3 z^9 a^9-6 z^7 a^9-6 z^5 a^9+10 z^3 a^9-3 z a^9+z^{10} a^8+3 z^8 a^8-26 z^6 a^8+38 z^4 a^8-21 z^2 a^8+5 a^8+5 z^9 a^7-22 z^7 a^7+27 z^5 a^7-11 z^3 a^7+2 z a^7+z^{10} a^6-z^8 a^6-13 z^6 a^6+28 z^4 a^6-16 z^2 a^6+3 a^6+2 z^9 a^5-11 z^7 a^5+19 z^5 a^5-11 z^3 a^5+z a^5+z^8 a^4-6 z^6 a^4+12 z^4 a^4-9 z^2 a^4+2 a^4 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a142"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+5 t^3-8 t^2+10 t-11+10 t^{-1} -8 t^{-2} +5 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ q^{-1} -2 q^{-2} +4 q^{-3} -6 q^{-4} +8 q^{-5} -8 q^{-6} +9 q^{-7} -8 q^{-8} +6 q^{-9} -4 q^{-10} +2 q^{-11} - q^{-12} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (7, -20) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-6 is the signature of K11a142. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



