"Rubberband" Brunnian Links: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 19: | Line 19: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 1 | |
||
in = <nowiki>K0 = |
in = <nowiki>K0 = |
||
PD[X[1, 10, 5, 12], X[2, 12, 6, 14], X[5, 11, 8, 13], |
PD[X[1, 10, 5, 12], X[2, 12, 6, 14], X[5, 11, 8, 13], |
||
Line 31: | Line 31: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 2 | |
||
in = <nowiki>RubberBandBrunnian[n_] := |
in = <nowiki>RubberBandBrunnian[n_] := |
||
Join @@ Table[K0 /. j_Integer :> j + 16 k, {k, 0, n - 1}] /. {16 |
Join @@ Table[K0 /. j_Integer :> j + 16 k, {k, 0, n - 1}] /. {16 |
||
Line 41: | Line 41: | ||
<!--$$DrawMorseLink[RBB3=RubberBandBrunnian[3]]$$--> |
<!--$$DrawMorseLink[RBB3=RubberBandBrunnian[3]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{ |
{{Graphics| |
||
n = 4 | |
n = 4 | |
||
in = <nowiki>RBB3=RubberBandBrunnian[3] |
in = <nowiki>DrawMorseLink[RBB3=RubberBandBrunnian[3]]</nowiki> | |
||
img= "Rubberband" Brunnian Links_Out_3.gif | |
|||
RBB4=RubberBandBrunnian[4]; |
|||
out= <nowiki>-Graphics-</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$DrawMorseLink[RBB4=RubberBandBrunnian[4]]$$--> |
<!--$$DrawMorseLink[RBB4=RubberBandBrunnian[4]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{Graphics| |
|||
n = 6 | |
|||
in = <nowiki>DrawMorseLink[RBB4=RubberBandBrunnian[4]]</nowiki> | |
|||
img= "Rubberband" Brunnian Links_Out_5.gif | |
|||
out= <nowiki>-Graphics-</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$DrawMorseLink[RBB5=RubberBandBrunnian[5]]$$--> |
<!--$$DrawMorseLink[RBB5=RubberBandBrunnian[5]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{Graphics| |
|||
n = 8 | |
|||
in = <nowiki>DrawMorseLink[RBB5=RubberBandBrunnian[5]]</nowiki> | |
|||
img= "Rubberband" Brunnian Links_Out_7.gif | |
|||
out= <nowiki>-Graphics-</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 57: | Line 69: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 9 | |
||
in = <nowiki>RBJones= Jones[#][q] & /@ {RBB3, RBB4, RBB5}</nowiki> | |
in = <nowiki>RBJones= Jones[#][q] & /@ {RBB3, RBB4, RBB5}</nowiki> | |
||
out= <nowiki> 2 3 4 5 7 8 9 10 |
out= <nowiki> 2 3 4 5 7 8 9 10 |
||
Line 95: | Line 107: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 10 | |
||
in = <nowiki>S = SubLink[RubberBandBrunnian[5], {1, 2, 3, 4}];</nowiki>}} |
in = <nowiki>S = SubLink[RubberBandBrunnian[5], {1, 2, 3, 4}];</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
Line 102: | Line 114: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 11 | |
||
in = <nowiki>J=Factor[Jones[S][q]]</nowiki> | |
in = <nowiki>J=Factor[Jones[S][q]]</nowiki> | |
||
out= <nowiki> |
out= <nowiki> 1/4 P[1, 10] P[5, 12] |
||
-((Sqrt[q] SubLink[PD[q P[1, 12] P[5, 10] + -----------------, |
|||
-(q (1 + q) )</nowiki>}} |
|||
1/4 |
|||
q |
|||
1/4 P[2, 12] P[6, 14] |
|||
q P[2, 14] P[6, 12] + -----------------, |
|||
1/4 |
|||
q |
|||
1/4 P[5, 11] P[8, 13] |
|||
q P[5, 13] P[8, 11] + -----------------, |
|||
1/4 |
|||
q |
|||
1/4 P[6, 13] P[9, 15] |
|||
q P[6, 15] P[9, 13] + -----------------, |
|||
1/4 |
|||
q |
|||
1/4 P[0, 10] P[4, 16] |
|||
q P[0, 16] P[4, 10] + -----------------, |
|||
1/4 |
|||
q |
|||
1/4 P[4, 11] P[8, 17] |
|||
q P[4, 17] P[8, 11] + -----------------, |
|||
1/4 |
|||
q |
|||
P[3, 19] P[7, 14] 1/4 |
|||
----------------- + q P[3, 14] P[7, 19], |
|||
1/4 |
|||
q |
|||
P[7, 18] P[9, 15] 1/4 |
|||
----------------- + q P[7, 15] P[9, 18], |
|||
1/4 |
|||
q |
|||
1/4 P[17, 26] P[21, 28] |
|||
q P[17, 28] P[21, 26] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[18, 28] P[22, 30] |
|||
q P[18, 30] P[22, 28] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[21, 27] P[24, 29] |
|||
q P[21, 29] P[24, 27] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[22, 29] P[25, 31] |
|||
q P[22, 31] P[25, 29] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[16, 26] P[20, 32] |
|||
q P[16, 32] P[20, 26] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[20, 27] P[24, 33] |
|||
q P[20, 33] P[24, 27] + -------------------, |
|||
1/4 |
|||
q |
|||
P[19, 35] P[23, 30] 1/4 |
|||
------------------- + q P[19, 30] P[23, 35], |
|||
1/4 |
|||
q |
|||
P[23, 34] P[25, 31] 1/4 |
|||
------------------- + q P[23, 31] P[25, 34], |
|||
1/4 |
|||
q |
|||
1/4 P[33, 42] P[37, 44] |
|||
q P[33, 44] P[37, 42] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[34, 44] P[38, 46] |
|||
q P[34, 46] P[38, 44] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[37, 43] P[40, 45] |
|||
q P[37, 45] P[40, 43] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[38, 45] P[41, 47] |
|||
q P[38, 47] P[41, 45] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[32, 42] P[36, 48] |
|||
q P[32, 48] P[36, 42] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[36, 43] P[40, 49] |
|||
q P[36, 49] P[40, 43] + -------------------, |
|||
1/4 |
|||
q |
|||
P[35, 51] P[39, 46] 1/4 |
|||
------------------- + q P[35, 46] P[39, 51], |
|||
1/4 |
|||
q |
|||
P[39, 50] P[41, 47] 1/4 |
|||
------------------- + q P[39, 47] P[41, 50], |
|||
1/4 |
|||
q |
|||
1/4 P[49, 58] P[53, 60] |
|||
q P[49, 60] P[53, 58] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[50, 60] P[54, 62] |
|||
q P[50, 62] P[54, 60] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[53, 59] P[56, 61] |
|||
q P[53, 61] P[56, 59] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[54, 61] P[57, 63] |
|||
q P[54, 63] P[57, 61] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[48, 58] P[52, 64] |
|||
q P[48, 64] P[52, 58] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[52, 59] P[56, 65] |
|||
q P[52, 65] P[56, 59] + -------------------, |
|||
1/4 |
|||
q |
|||
P[51, 67] P[55, 62] 1/4 |
|||
------------------- + q P[51, 62] P[55, 67], |
|||
1/4 |
|||
q |
|||
P[55, 66] P[57, 63] 1/4 |
|||
------------------- + q P[55, 63] P[57, 66], |
|||
1/4 |
|||
q |
|||
1/4 P[65, 74] P[69, 76] |
|||
q P[65, 76] P[69, 74] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[66, 76] P[70, 78] |
|||
q P[66, 78] P[70, 76] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[69, 75] P[72, 77] |
|||
q P[69, 77] P[72, 75] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[70, 77] P[73, 79] |
|||
q P[70, 79] P[73, 77] + -------------------, |
|||
1/4 |
|||
q |
|||
P[0, 68] P[64, 74] 1/4 |
|||
------------------ + q P[0, 64] P[68, 74], |
|||
1/4 |
|||
q |
|||
P[1, 72] P[68, 75] 1/4 |
|||
------------------ + q P[1, 68] P[72, 75], |
|||
1/4 |
|||
q |
|||
1/4 P[3, 67] P[71, 78] |
|||
q P[3, 71] P[67, 78] + ------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[2, 71] P[73, 79] |
|||
q P[2, 73] P[71, 79] + ------------------], {1, 2, 3, 4}]) / |
|||
1/4 |
|||
q |
|||
(1 + q))</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 122: | Line 333: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 12 | |
||
in = <nowiki>BR /: Inverse[BR[n_, l_List]] := BR[n, -Reverse[l]]; |
in = <nowiki>BR /: Inverse[BR[n_, l_List]] := BR[n, -Reverse[l]]; |
||
BR /: BR[n1_, l1_] ** BR[n2_, l2_] := BR[Max[n1, n2], Join[l1, l2]]; |
BR /: BR[n1_, l1_] ** BR[n2_, l2_] := BR[Max[n1, n2], Join[l1, l2]]; |
||
Line 144: | Line 355: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 13 | |
||
in = <nowiki>DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]]; |
in = <nowiki>DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]]; |
||
DeleteStrand[k_, {}] = {}; |
DeleteStrand[k_, {}] = {}; |
||
Line 160: | Line 371: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{Graphics| |
{{Graphics| |
||
n = |
n = 15 | |
||
in = <nowiki>(b = BrunnianBraid[4]) // BraidPlot </nowiki> | |
in = <nowiki>(b = BrunnianBraid[4]) // BraidPlot </nowiki> | |
||
img= |
img= "Rubberband" Brunnian Links_Out_14.gif | |
||
out= <nowiki>-Graphics-</nowiki>}} |
out= <nowiki>-Graphics-</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
Line 169: | Line 380: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 16 | |
||
in = <nowiki>Jones[b][q]</nowiki> | |
in = <nowiki>Jones[b][q]</nowiki> | |
||
out= <nowiki> -(11/2) 4 6 5 5 1 3/2 |
out= <nowiki> -(11/2) 4 6 5 5 1 3/2 |
||
Line 183: | Line 394: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{Graphics| |
{{Graphics| |
||
n = |
n = 18 | |
||
in = <nowiki>(bb = DeleteStrand[4, b]) // BraidPlot</nowiki> | |
in = <nowiki>(bb = DeleteStrand[4, b]) // BraidPlot</nowiki> | |
||
img= |
img= "Rubberband" Brunnian Links_Out_17.gif | |
||
out= <nowiki>-Graphics-</nowiki>}} |
out= <nowiki>-Graphics-</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
Line 192: | Line 403: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 19 | |
||
in = <nowiki>Jones[#][q] & /@ {bb, BR[3, {}]}</nowiki> | |
in = <nowiki>Jones[#][q] & /@ {bb, BR[3, {}]}</nowiki> | |
||
out= <nowiki> 1 1 |
out= <nowiki> 1 1 |
Revision as of 13:45, 12 October 2007
A "Rubberband" Brunnian link is obtained by connecting unknots in a closed chain as illustrated in the diagram of the 10-component link, where the last knot gets connected to the first one.
If we number the strands in one section of the link as shown and proceed with numbering each following section in the same manner, we can get its PD form. The PD of any "Rubberband" link can be generated in this way by varying the desired number of components:
(For In[1] see Setup)
In[1]:=
|
K0 =
PD[X[1, 10, 5, 12], X[2, 12, 6, 14], X[5, 11, 8, 13],
X[6, 13, 9, 15], X[10, 0, 16, 4], X[11, 4, 17, 8], X[14, 7, 19, 3],
X[15, 9, 18, 7]];
|
In[2]:=
|
RubberBandBrunnian[n_] :=
Join @@ Table[K0 /. j_Integer :> j + 16 k, {k, 0, n - 1}] /. {16
n -> 0, 16 n + 1 -> 1, 16 n + 2 -> 2, 16 n + 3 -> 3}
|
For instance, let us draw the links with three, four, and five components and compute their Jones polynomials:
In[4]:=
|
DrawMorseLink[RBB3=RubberBandBrunnian[3]]
|
File:"Rubberband" Brunnian Links Out 3.gif | |
Out[4]=
|
-Graphics-
|
In[6]:=
|
DrawMorseLink[RBB4=RubberBandBrunnian[4]]
|
File:"Rubberband" Brunnian Links Out 5.gif | |
Out[6]=
|
-Graphics-
|
In[8]:=
|
DrawMorseLink[RBB5=RubberBandBrunnian[5]]
|
File:"Rubberband" Brunnian Links Out 7.gif | |
Out[8]=
|
-Graphics-
|
In[9]:=
|
RBJones= Jones[#][q] & /@ {RBB3, RBB4, RBB5}
|
Out[9]=
|
2 3 4 5 7 8 9 10
{-q + 5 q - 11 q + 14 q - 10 q + 11 q - 18 q + 24 q - 18 q +
11 13 14 15 16 17
11 q - 10 q + 14 q - 11 q + 5 q - q ,
3/2 5/2 7/2 9/2 11/2 13/2 15/2
-q + 7 q - 24 q + 49 q - 56 q + 18 q + 51 q -
17/2 19/2 21/2 23/2 25/2
111 q + 131 q - 100 q + 32 q + 32 q -
27/2 29/2 31/2 33/2 35/2 37/2
100 q + 131 q - 111 q + 51 q + 18 q - 56 q +
39/2 41/2 43/2 45/2
49 q - 24 q + 7 q - q ,
2 3 4 5 6 7 8 9
-q + 9 q - 40 q + 110 q - 189 q + 167 q + 57 q - 414 q +
10 11 12 13 14 15
660 q - 581 q + 189 q + 305 q - 672 q + 816 q -
16 17 18 19 20 21 22
672 q + 305 q + 189 q - 581 q + 660 q - 414 q + 57 q +
23 24 25 26 27 28
167 q - 189 q + 110 q - 40 q + 9 q - q }
|
We can also check that when one component is removed the remaining link is trivial:
In[10]:=
|
S = SubLink[RubberBandBrunnian[5], {1, 2, 3, 4}];
|
In[11]:=
|
J=Factor[Jones[S][q]]
|
Out[11]=
|
1/4 P[1, 10] P[5, 12]
-((Sqrt[q] SubLink[PD[q P[1, 12] P[5, 10] + -----------------,
1/4
q
1/4 P[2, 12] P[6, 14]
q P[2, 14] P[6, 12] + -----------------,
1/4
q
1/4 P[5, 11] P[8, 13]
q P[5, 13] P[8, 11] + -----------------,
1/4
q
1/4 P[6, 13] P[9, 15]
q P[6, 15] P[9, 13] + -----------------,
1/4
q
1/4 P[0, 10] P[4, 16]
q P[0, 16] P[4, 10] + -----------------,
1/4
q
1/4 P[4, 11] P[8, 17]
q P[4, 17] P[8, 11] + -----------------,
1/4
q
P[3, 19] P[7, 14] 1/4
----------------- + q P[3, 14] P[7, 19],
1/4
q
P[7, 18] P[9, 15] 1/4
----------------- + q P[7, 15] P[9, 18],
1/4
q
1/4 P[17, 26] P[21, 28]
q P[17, 28] P[21, 26] + -------------------,
1/4
q
1/4 P[18, 28] P[22, 30]
q P[18, 30] P[22, 28] + -------------------,
1/4
q
1/4 P[21, 27] P[24, 29]
q P[21, 29] P[24, 27] + -------------------,
1/4
q
1/4 P[22, 29] P[25, 31]
q P[22, 31] P[25, 29] + -------------------,
1/4
q
1/4 P[16, 26] P[20, 32]
q P[16, 32] P[20, 26] + -------------------,
1/4
q
1/4 P[20, 27] P[24, 33]
q P[20, 33] P[24, 27] + -------------------,
1/4
q
P[19, 35] P[23, 30] 1/4
------------------- + q P[19, 30] P[23, 35],
1/4
q
P[23, 34] P[25, 31] 1/4
------------------- + q P[23, 31] P[25, 34],
1/4
q
1/4 P[33, 42] P[37, 44]
q P[33, 44] P[37, 42] + -------------------,
1/4
q
1/4 P[34, 44] P[38, 46]
q P[34, 46] P[38, 44] + -------------------,
1/4
q
1/4 P[37, 43] P[40, 45]
q P[37, 45] P[40, 43] + -------------------,
1/4
q
1/4 P[38, 45] P[41, 47]
q P[38, 47] P[41, 45] + -------------------,
1/4
q
1/4 P[32, 42] P[36, 48]
q P[32, 48] P[36, 42] + -------------------,
1/4
q
1/4 P[36, 43] P[40, 49]
q P[36, 49] P[40, 43] + -------------------,
1/4
q
P[35, 51] P[39, 46] 1/4
------------------- + q P[35, 46] P[39, 51],
1/4
q
P[39, 50] P[41, 47] 1/4
------------------- + q P[39, 47] P[41, 50],
1/4
q
1/4 P[49, 58] P[53, 60]
q P[49, 60] P[53, 58] + -------------------,
1/4
q
1/4 P[50, 60] P[54, 62]
q P[50, 62] P[54, 60] + -------------------,
1/4
q
1/4 P[53, 59] P[56, 61]
q P[53, 61] P[56, 59] + -------------------,
1/4
q
1/4 P[54, 61] P[57, 63]
q P[54, 63] P[57, 61] + -------------------,
1/4
q
1/4 P[48, 58] P[52, 64]
q P[48, 64] P[52, 58] + -------------------,
1/4
q
1/4 P[52, 59] P[56, 65]
q P[52, 65] P[56, 59] + -------------------,
1/4
q
P[51, 67] P[55, 62] 1/4
------------------- + q P[51, 62] P[55, 67],
1/4
q
P[55, 66] P[57, 63] 1/4
------------------- + q P[55, 63] P[57, 66],
1/4
q
1/4 P[65, 74] P[69, 76]
q P[65, 76] P[69, 74] + -------------------,
1/4
q
1/4 P[66, 76] P[70, 78]
q P[66, 78] P[70, 76] + -------------------,
1/4
q
1/4 P[69, 75] P[72, 77]
q P[69, 77] P[72, 75] + -------------------,
1/4
q
1/4 P[70, 77] P[73, 79]
q P[70, 79] P[73, 77] + -------------------,
1/4
q
P[0, 68] P[64, 74] 1/4
------------------ + q P[0, 64] P[68, 74],
1/4
q
P[1, 72] P[68, 75] 1/4
------------------ + q P[1, 68] P[72, 75],
1/4
q
1/4 P[3, 67] P[71, 78]
q P[3, 71] P[67, 78] + ------------------,
1/4
q
1/4 P[2, 71] P[73, 79]
q P[2, 73] P[71, 79] + ------------------], {1, 2, 3, 4}]) /
1/4
q
(1 + q))
|
Brunnian Braids
Similarly, in the case of Brunnian braids, removing one strand gives us a trivial braid. We can verify that using the following two programs. The first one constructs a Brunnian braid while the second one removes a selected strand:
In[12]:=
|
BR /: Inverse[BR[n_, l_List]] := BR[n, -Reverse[l]];
BR /: BR[n1_, l1_] ** BR[n2_, l2_] := BR[Max[n1, n2], Join[l1, l2]];
BrunnianBraid[2] = BR[2, {1, 1}];
BrunnianBraid[n_] /; n > 2 := Module[
{b0},
b0 = BrunnianBraid[n - 1];
((b0 ** BR[n, {n - 1, n - 1}]) ** Inverse[b0]) **
BR[n, {1 - n, 1 - n}]
]
|
In[13]:=
|
DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]];
DeleteStrand[k_, {}] = {};
DeleteStrand[k_, {j1_, js___}] := Which[
k < Abs[j1], {j1 - Sign[j1]}~Join~DeleteStrand[k, {js}],
k == Abs[j1], DeleteStrand[k + 1, {js}],
k == Abs[j1] + 1, DeleteStrand[k - 1, {js}],
k > Abs[j1] + 1, {j1}~Join~DeleteStrand[k, {js}]
]
|
Testing for the Brunnian braid with four strands, we get:
In[15]:=
|
(b = BrunnianBraid[4]) // BraidPlot
|
File:"Rubberband" Brunnian Links Out 14.gif | |
Out[15]=
|
-Graphics-
|
In[16]:=
|
Jones[b][q]
|
Out[16]=
|
-(11/2) 4 6 5 5 1 3/2
-q + ---- - ---- + ---- - ---- - ------- - Sqrt[q] - 5 q +
9/2 7/2 5/2 3/2 Sqrt[q]
q q q q
5/2 7/2 9/2 11/2
5 q - 6 q + 4 q - q
|
In[18]:=
|
(bb = DeleteStrand[4, b]) // BraidPlot
|
File:"Rubberband" Brunnian Links Out 17.gif | |
Out[18]=
|
-Graphics-
|
In[19]:=
|
Jones[#][q] & /@ {bb, BR[3, {}]}
|
Out[19]=
|
1 1
{2 + - + q, 2 + - + q}
q q
|