|
|
Line 1: |
Line 1: |
|
|
http://www.textgetcobocr.com |
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
Revision as of 04:58, 22 May 2009
http://www.textgetcobocr.com
Knot presentations
Planar diagram presentation
|
X1425 X3849 X5,12,6,13 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X11,6,12,7 X7283
|
Gauss code
|
-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -4, 8, -7, 5, -6, 4, -8, 7
|
Dowker-Thistlethwaite code
|
4 8 12 2 16 6 18 20 10 14
|
Conway Notation
|
[(3,2)(21,2)]
|
Minimum Braid Representative
|
A Morse Link Presentation
|
An Arc Presentation
|
Length is 11, width is 4,
Braid index is 4
|
|
[{13, 2}, {1, 11}, {9, 12}, {11, 13}, {10, 3}, {2, 9}, {7, 10}, {8, 4}, {3, 5}, {12, 7}, {4, 6}, {5, 8}, {6, 1}]
|
[edit Notes on presentations of 10 80]
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["10 80"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X5,12,6,13 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X11,6,12,7 X7283
|
Out[5]=
|
-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -4, 8, -7, 5, -6, 4, -8, 7
|
Out[6]=
|
4 8 12 2 16 6 18 20 10 14
|
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
In[11]:=
|
Show[BraidPlot[br]]
|
In[12]:=
|
Show[DrawMorseLink[K]]
|
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{13, 2}, {1, 11}, {9, 12}, {11, 13}, {10, 3}, {2, 9}, {7, 10}, {8, 4}, {3, 5}, {12, 7}, {4, 6}, {5, 8}, {6, 1}]
|
Four dimensional invariants
Polynomial invariants
Alexander polynomial |
|
Conway polynomial |
|
2nd Alexander ideal (db, data sources) |
|
Determinant and Signature |
{ 71, -6 } |
Jones polynomial |
|
HOMFLY-PT polynomial (db, data sources) |
|
Kauffman polynomial (db, data sources) |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{16}-z^2 a^{16}+3 z^5 a^{15}-3 z^3 a^{15}+z a^{15}+5 z^6 a^{14}-5 z^4 a^{14}+2 z^2 a^{14}+6 z^7 a^{13}-8 z^5 a^{13}+6 z^3 a^{13}-2 z a^{13}+4 z^8 a^{12}-z^6 a^{12}-5 z^4 a^{12}+2 z^2 a^{12}+2 a^{12}+z^9 a^{11}+10 z^7 a^{11}-29 z^5 a^{11}+29 z^3 a^{11}-12 z a^{11}+7 z^8 a^{10}-15 z^6 a^{10}+13 z^4 a^{10}-13 z^2 a^{10}+6 a^{10}+z^9 a^9+6 z^7 a^9-23 z^5 a^9+22 z^3 a^9-8 z a^9+3 z^8 a^8-8 z^6 a^8+8 z^4 a^8-7 z^2 a^8+3 a^8+2 z^7 a^7-5 z^5 a^7+2 z^3 a^7+z a^7+z^6 a^6-4 z^4 a^6+5 z^2 a^6-2 a^6}
|
The A2 invariant |
|
The G2 invariant |
|
Further Quantum Invariants
Further quantum knot invariants for 10_80.
A1 Invariants.
Weight
|
Invariant
|
1
|
|
2
|
|
3
|
|
4
|
|
5
|
|
A2 Invariants.
Weight
|
Invariant
|
1,0
|
|
1,1
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{108}-4 q^{106}+10 q^{104}-20 q^{102}+38 q^{100}-66 q^{98}+102 q^{96}-154 q^{94}+223 q^{92}-302 q^{90}+386 q^{88}-474 q^{86}+548 q^{84}-578 q^{82}+552 q^{80}-460 q^{78}+289 q^{76}-44 q^{74}-250 q^{72}+562 q^{70}-849 q^{68}+1084 q^{66}-1220 q^{64}+1260 q^{62}-1181 q^{60}+1008 q^{58}-748 q^{56}+436 q^{54}-129 q^{52}-184 q^{50}+414 q^{48}-596 q^{46}+658 q^{44}-662 q^{42}+594 q^{40}-474 q^{38}+360 q^{36}-234 q^{34}+154 q^{32}-76 q^{30}+43 q^{28}-16 q^{26}+8 q^{24}-2 q^{22}+q^{20}}
|
2,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{100}+q^{98}-q^{94}-2 q^{92}-2 q^{90}-5 q^{88}+5 q^{84}-q^{82}-q^{80}+6 q^{78}+9 q^{76}-3 q^{74}-5 q^{72}+12 q^{70}+6 q^{68}-8 q^{66}-2 q^{64}+6 q^{62}-8 q^{60}-12 q^{58}-q^{56}-3 q^{54}-11 q^{52}-2 q^{50}+8 q^{48}-7 q^{46}-5 q^{44}+12 q^{42}+6 q^{40}-6 q^{38}+3 q^{36}+11 q^{34}+3 q^{32}-5 q^{30}+3 q^{28}+5 q^{26}-q^{24}-q^{22}+q^{20}}
|
A3 Invariants.
Weight
|
Invariant
|
0,1,0
|
|
1,0,0
|
|
A4 Invariants.
Weight
|
Invariant
|
0,1,0,0
|
|
1,0,0,0
|
|
B2 Invariants.
Weight
|
Invariant
|
0,1
|
|
1,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{142}-2 q^{138}-2 q^{136}+2 q^{134}+6 q^{132}+q^{130}-9 q^{128}-9 q^{126}+5 q^{124}+17 q^{122}+4 q^{120}-19 q^{118}-16 q^{116}+11 q^{114}+24 q^{112}-23 q^{108}-9 q^{106}+20 q^{104}+18 q^{102}-9 q^{100}-16 q^{98}+7 q^{96}+19 q^{94}+q^{92}-18 q^{90}-5 q^{88}+12 q^{86}+4 q^{84}-17 q^{82}-13 q^{80}+9 q^{78}+11 q^{76}-13 q^{74}-23 q^{72}+2 q^{70}+24 q^{68}+9 q^{66}-21 q^{64}-18 q^{62}+14 q^{60}+26 q^{58}+q^{56}-17 q^{54}-8 q^{52}+14 q^{50}+13 q^{48}-2 q^{46}-8 q^{44}+5 q^{40}+3 q^{38}-q^{36}-q^{34}+q^{30}}
|
D4 Invariants.
Weight
|
Invariant
|
1,0,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{122}-2 q^{120}+2 q^{118}-3 q^{116}+6 q^{114}-9 q^{112}+8 q^{110}-11 q^{108}+17 q^{106}-18 q^{104}+15 q^{102}-18 q^{100}+19 q^{98}-14 q^{96}+8 q^{94}-6 q^{92}+3 q^{90}+14 q^{88}-9 q^{86}+24 q^{84}-22 q^{82}+35 q^{80}-33 q^{78}+29 q^{76}-44 q^{74}+22 q^{72}-37 q^{70}+14 q^{68}-26 q^{66}+6 q^{64}-3 q^{62}+10 q^{58}-9 q^{56}+22 q^{54}-14 q^{52}+21 q^{50}-15 q^{48}+20 q^{46}-11 q^{44}+14 q^{42}-7 q^{40}+8 q^{38}-2 q^{36}+3 q^{34}-q^{32}+q^{30}}
|
G2 Invariants.
Weight
|
Invariant
|
1,0
|
|
.
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["10 80"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{16}-z^2 a^{16}+3 z^5 a^{15}-3 z^3 a^{15}+z a^{15}+5 z^6 a^{14}-5 z^4 a^{14}+2 z^2 a^{14}+6 z^7 a^{13}-8 z^5 a^{13}+6 z^3 a^{13}-2 z a^{13}+4 z^8 a^{12}-z^6 a^{12}-5 z^4 a^{12}+2 z^2 a^{12}+2 a^{12}+z^9 a^{11}+10 z^7 a^{11}-29 z^5 a^{11}+29 z^3 a^{11}-12 z a^{11}+7 z^8 a^{10}-15 z^6 a^{10}+13 z^4 a^{10}-13 z^2 a^{10}+6 a^{10}+z^9 a^9+6 z^7 a^9-23 z^5 a^9+22 z^3 a^9-8 z a^9+3 z^8 a^8-8 z^6 a^8+8 z^4 a^8-7 z^2 a^8+3 a^8+2 z^7 a^7-5 z^5 a^7+2 z^3 a^7+z a^7+z^6 a^6-4 z^4 a^6+5 z^2 a^6-2 a^6}
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial:
{}
Same Jones Polynomial (up to mirroring, ):
{}
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["10 80"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} -2 q^{-4} +6 q^{-5} -8 q^{-6} +11 q^{-7} -12 q^{-8} +11 q^{-9} -10 q^{-10} +6 q^{-11} -3 q^{-12} + q^{-13} }
}
|
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
|
|
|
|
|
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3040}
|
|
|
|
|
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1632}
|
|
|
|
|
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 10 80. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
|
|
-10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | χ |
-5 | | | | | | | | | | | 1 | 1 |
-7 | | | | | | | | | | 2 | 1 | -1 |
-9 | | | | | | | | | 4 | | | 4 |
-11 | | | | | | | | 4 | 2 | | | -2 |
-13 | | | | | | | 7 | 4 | | | | 3 |
-15 | | | | | | 5 | 4 | | | | | -1 |
-17 | | | | | 6 | 7 | | | | | | -1 |
-19 | | | | 4 | 5 | | | | | | | 1 |
-21 | | | 2 | 6 | | | | | | | | -4 |
-23 | | 1 | 4 | | | | | | | | | 3 |
-25 | | 2 | | | | | | | | | | -2 |
-27 | 1 | | | | | | | | | | | 1 |
|
The Coloured Jones Polynomials