|
|
Line 35: |
Line 35: |
|
|} |
|
|} |
|
|
|
|
|
|
<table border=1> |
|
{{subst:Khovanov Invariants|name=7_5}} |
|
|
|
<tr align=center> |
|
|
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
|
|
<tr><td>\</td><td> </td><td>r</td></tr> |
|
|
<tr><td> </td><td> \ </td><td> </td></tr> |
|
|
<tr><td>j</td><td> </td><td>\</td></tr> |
|
|
</table></td> |
|
|
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>χ</td></tr> |
|
|
<tr align=center><td>27</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td>-1</td></tr> |
|
|
<tr align=center><td>25</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td> </td><td> </td><td>-1</td></tr> |
|
|
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td> </td><td bgcolor=red>1</td><td bgcolor=red>1</td><td> </td><td>-1</td></tr> |
|
|
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td>0</td></tr> |
|
|
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=red>1</td><td> </td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|
|
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|
|
<tr align=center><td>15</td><td> </td><td> </td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|
|
<tr align=center><td>13</td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|
|
<tr align=center><td>11</td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|
|
</table> |
|
|
|
|
|
{{subst:Quantum Invariants|name=7_5}} |
|
{{subst:Quantum Invariants|name=7_5}} |
[[Image:T(7,3).{{{ext}}}|80px|link=T(7,3)]]
T(7,3)
|
[[Image:T(15,2).{{{ext}}}|80px|link=T(15,2)]]
T(15,2)
|
Visit T(5,4)'s page at Knotilus!
Visit T(5,4)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation
|
X17,25,18,24 X10,26,11,25 X3,27,4,26 X11,19,12,18 X4,20,5,19 X27,21,28,20 X5,13,6,12 X28,14,29,13 X21,15,22,14 X29,7,30,6 X22,8,23,7 X15,9,16,8 X23,1,24,30 X16,2,17,1 X9,3,10,2
|
Gauss code
|
{14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13}
|
Dowker-Thistlethwaite code
|
16 -26 -12 22 -2 -18 28 -8 -24 4 -14 -30 10 -20 -6
|
Polynomial invariants
Polynomial invariants
Alexander polynomial |
|
Conway polynomial |
|
2nd Alexander ideal (db, data sources) |
|
Determinant and Signature |
{ 5, 8 } |
Jones polynomial |
|
HOMFLY-PT polynomial (db, data sources) |
|
Kauffman polynomial (db, data sources) |
|
The A2 invariant |
Data:T(5,4)/QuantumInvariant/A2/1,0 |
The G2 invariant |
Data:T(5,4)/QuantumInvariant/G2/1,0 |
Further Quantum Invariants
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["T(5,4)"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | χ |
27 | | | | | | | | | | 1 | -1 |
25 | | | | | | | | 1 | | | -1 |
23 | | | | | | 1 | | 1 | 1 | | -1 |
21 | | | | | | 1 | 1 | | | | 0 |
19 | | | | 1 | 1 | | 1 | | | | 1 |
17 | | | | | 1 | | | | | | 1 |
15 | | | 1 | | | | | | | | 1 |
13 | 1 | | | | | | | | | | 1 |
11 | 1 | | | | | | | | | | 1 |
{{subst:Quantum Invariants|name=7_5}}