T(13,2): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- Script generated - do not edit! --> |
<!-- Script generated - do not edit! --> |
||
<!-- --> |
|||
<!-- ailed $Failedn$F $Failedmath . u . c$Failedv$ileddge] at [h$Failedn.matuwo . ca |
|||
-------- |
|||
<span id="top"></span> |
|||
caidml K$FaidailedsKt$idpa$Faidront$iledailedtres$Failedgrams | dir en Planartio$Failede="padding-left: 1em;" | X<sub>3146<u b 152/s$Failed62</sub> |
|||
{{Knot Navigation Links|prev=T(11,2).jpg|next=T(7,3).jpg}} |
|||
Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-4,5,-6,7,-8,9,-10,11,-12,13,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,1,-2,3/goTop.html T(13,2)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
|||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/13.2.html T(13,2)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|||
===Knot presentations=== |
|||
{| |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
|style="padding-left: 1em;" | X<sub>11,25,12,24</sub> X<sub>25,13,26,12</sub> X<sub>13,1,14,26</sub> X<sub>1,15,2,14</sub> X<sub>15,3,16,2</sub> X<sub>3,17,4,16</sub> X<sub>17,5,18,4</sub> X<sub>5,19,6,18</sub> X<sub>19,7,20,6</sub> X<sub>7,21,8,20</sub> X<sub>21,9,22,8</sub> X<sub>9,23,10,22</sub> X<sub>23,11,24,10</sub> |
|||
|- |
|- |
||
|'''[[Gauss Codes|Gauss code]]''' |
|||
|'''[[GausCeGss cod$Failede=$Faile$Failed1, 2, -3, 1} |
|||
|style="padding-left: 1em;" | {-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 1, -2, 3} |
|||
'$Failed (Dowk-ThistlaeCes|Dowr - Thistlailedepa$Faedial Invariants|name=T(3,2)}} |
|||
|- |
|||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|||
|style="padding-left: 1em;" | 14 16 18 20 22 24 26 2 4 6 8 10 12 |
|||
|} |
|||
===Polynomial invariants=== |
|||
===[[Finite Type (Vassiliev)nvaanFailed===$Failed''' |
|||
|style="padding-left: 1em;"$Failed) |
|||
{{Polynomial Invariants|name=T(13,2)}} |
|||
===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]=== |
|||
{| style="margin-left: 1em;" |
|||
|- |
|||
|'''V<sub>2</sub> and V<sub>3</sub>''' |
|||
|style="padding-left: 1em;" | {0, 91}) |
|||
|} |
|} |
||
[[Khovanov Homology]]. The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>12 is the signature of T(13,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
[[KhovHomolo$Failedeffi oven$Failed> are shoFaile</math>, over ternationmathmath>). The squares with <f$FailedYe2</math>, where <math>s=</math>22 signHLRed$Fail the<center><table border=1> |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=11.1111%><table cellpadding=0 cellspacing=0> |
|||
<td wid$Failedled$Failed>j</td><td> </td$Failed/tr> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
</tab$Failed/$Failedlednter><td>9</td><td> </td><td> $Failedtd bgcyello1</$Faileded<td> </td><t$Failedo$Failedo$Fail$Failediled>$Failed&$Failedd$Failed>$Failed>$Fa$Failed style="color: red; borpadding:0"><< KnotTheory$Failed |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
</tr>$$Failed9$Failedd$Failed<$Failed;$Failed=$Failed $Failedn$Failedi$Failedn$Failedp $Failedd$Faile$Failed |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
ailed > -----$Failed------ |
|||
</table></td> |
|||
tdtd><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[3, 2]]</now$Failededp$Failed $Failedo$F$Failedd,$Faileds$Failedi$Failed<$Failedo$Failede$Failedk$Failedi$Failedp$Failedde[-2, 3, -1, 2, -3, 1]</nowiki></pre></td><Failedolor:bl$Faidn[5]:=</nowiki></$Faedrd$Faido$Failed>$Failedea$Failed<$Failedd$Failed $Failedn0rpadding:0<$Failed3$Failedr$Failed: $Failed </now$Faile t |
|||
<td width=5.55556%>0</td ><td width=5.55556%>1</td ><td width=5.55556%>2</td ><td width=5.55556%>3</td ><td width=5.55556%>4</td ><td width=5.55556%>5</td ><td width=5.55556%>6</td ><td width=5.55556%>7</td ><td width=5.55556%>8</td ><td width=5.55556%>9</td ><td width=5.55556%>10</td ><td width=5.55556%>11</td ><td width=5.55556%>12</td ><td width=5.55556%>13</td ><td width=11.1111%>χ</td></tr> |
|||
-1 - ------- + borde $Failed < $Fa |
|||
<tr align=center><td>39</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
$Failededo$Failed<$Failede$Failed $Failedd$Failed>$Failede$Failed $Failede$Failed 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><t$Failedadding: 0em"><now$Failed=$Failed/$Faileda$Failede$Failedm$Failed&$Failedr$Failed<$Failed>$Failed<$FailedK$Failedt$Failede$Failed $Failednowiki>Out[9]= </nowiki></pre></td><td><p$Failedding: 0em"><nowik$Failed/$Failed>$Failedepadding:0<$Failed<$Failed:$Failedi$Failed"pai$Failed;$Failedi$Failed>$Failedr$Failedd$Failed border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr |
<tr align=center><td>37</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
||
<tr align=center><td>35</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>33</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>31</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>29</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>27</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>25</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>13</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[13, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>13</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[13, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[11, 25, 12, 24], X[25, 13, 26, 12], X[13, 1, 14, 26], |
|||
X[1, 15, 2, 14], X[15, 3, 16, 2], X[3, 17, 4, 16], X[17, 5, 18, 4], |
|||
X[5, 19, 6, 18], X[19, 7, 20, 6], X[7, 21, 8, 20], X[21, 9, 22, 8], |
|||
X[9, 23, 10, 22], X[23, 11, 24, 10]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[13, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -1, 2, -3, 4, -5, 6, |
|||
-7, 8, -9, 10, -11, 12, -13, 1, -2, 3]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[13, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[13, 2]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -5 -4 -3 -2 1 2 3 4 5 6 |
|||
1 + t - t + t - t + t - - - t + t - t + t - t + t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[13, 2]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 |
|||
1 + 21 z + 70 z + 84 z + 45 z + 11 z + z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[13, 2]], KnotSignature[TorusKnot[13, 2]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{13, 12}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[13, 2]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 9 10 11 12 13 14 15 16 17 18 19 |
|||
q + q - q + q - q + q - q + q - q + q - q + q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
Include[ColouredJonesM.mhtml] |
Include[ColouredJonesM.mhtml] |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[13, 2]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 22 24 26 28 30 50 52 54 |
||
q + q + 2 q + q - q - q</nowiki></pre></td></tr> |
q + q + 2 q + q + q - q - q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[13, 2]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
||
6 7 z z z z z z 6 z z 2 z |
|||
- |
--- + --- + --- - --- + --- - --- + --- - --- - --- + --- - ---- + |
||
14 12 25 23 21 19 17 15 13 24 22 |
|||
a a a a a |
a a a a a a a a a a a |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]}</nowiki></pre></td></tr> |
|||
2 2 2 2 2 3 3 3 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr> |
|||
3 z 4 z 5 z 41 z 56 z z 3 z 6 z 10 z |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[3, 2]][q, t]</nowiki></pre></td></tr> |
|||
---- - ---- + ---- - ----- - ----- + --- - ---- + ---- - ----- + |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 2 9 3 |
|||
20 18 16 14 12 23 21 19 17 |
|||
q + q + q t + q t</nowiki></pre></td></tr> |
|||
a a a a a a a a a |
|||
3 3 4 4 4 4 4 4 5 |
|||
15 z 35 z z 4 z 10 z 20 z 91 z 126 z z |
|||
----- + ----- + --- - ---- + ----- - ----- + ----- + ------ + --- - |
|||
15 13 22 20 18 16 14 12 21 |
|||
a a a a a a a a a |
|||
5 5 5 5 6 6 6 6 6 |
|||
5 z 15 z 35 z 56 z z 6 z 21 z 92 z 120 z |
|||
---- + ----- - ----- - ----- + --- - ---- + ----- - ----- - ------ + |
|||
19 17 15 13 20 18 16 14 12 |
|||
a a a a a a a a a |
|||
7 7 7 7 8 8 8 8 9 |
|||
z 7 z 28 z 36 z z 8 z 46 z 55 z z |
|||
--- - ---- + ----- + ----- + --- - ---- + ----- + ----- + --- - |
|||
19 17 15 13 18 16 14 12 17 |
|||
a a a a a a a a a |
|||
9 9 10 10 10 11 11 12 12 |
|||
9 z 10 z z 11 z 12 z z z z z |
|||
---- - ----- + --- - ------ - ------ + --- + --- + --- + --- |
|||
15 13 16 14 12 15 13 14 12 |
|||
a a a a a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[13, 2]], Vassiliev[3][TorusKnot[13, 2]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 91}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[13, 2]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 11 13 15 2 19 3 19 4 23 5 23 6 27 7 |
|||
q + q + q t + q t + q t + q t + q t + q t + |
|||
27 8 31 9 31 10 35 11 35 12 39 13 |
|||
q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
|||
</table> |
</table> |
Revision as of 18:35, 26 August 2005
[[Image:T(11,2).{{{ext}}}|80px|link=T(11,2)]] |
[[Image:T(7,3).{{{ext}}}|80px|link=T(7,3)]] |
Visit T(13,2)'s page at Knotilus!
Visit T(13,2)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation | X11,25,12,24 X25,13,26,12 X13,1,14,26 X1,15,2,14 X15,3,16,2 X3,17,4,16 X17,5,18,4 X5,19,6,18 X19,7,20,6 X7,21,8,20 X21,9,22,8 X9,23,10,22 X23,11,24,10 |
Gauss code | {-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 1, -2, 3} |
Dowker-Thistlethwaite code | 14 16 18 20 22 24 26 2 4 6 8 10 12 |
Polynomial invariants
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(13,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 13, 12 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3 | {0, 91}) |
Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 12 is the signature of T(13,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | χ | |||||||||
39 | 1 | -1 | ||||||||||||||||||||||
37 | 0 | |||||||||||||||||||||||
35 | 1 | 1 | 0 | |||||||||||||||||||||
33 | 0 | |||||||||||||||||||||||
31 | 1 | 1 | 0 | |||||||||||||||||||||
29 | 0 | |||||||||||||||||||||||
27 | 1 | 1 | 0 | |||||||||||||||||||||
25 | 0 | |||||||||||||||||||||||
23 | 1 | 1 | 0 | |||||||||||||||||||||
21 | 0 | |||||||||||||||||||||||
19 | 1 | 1 | 0 | |||||||||||||||||||||
17 | 0 | |||||||||||||||||||||||
15 | 1 | 1 | ||||||||||||||||||||||
13 | 1 | 1 | ||||||||||||||||||||||
11 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Include[ColouredJonesM.mhtml]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[13, 2]] |
Out[2]= | 13 |
In[3]:= | PD[TorusKnot[13, 2]] |
Out[3]= | PD[X[11, 25, 12, 24], X[25, 13, 26, 12], X[13, 1, 14, 26],X[1, 15, 2, 14], X[15, 3, 16, 2], X[3, 17, 4, 16], X[17, 5, 18, 4], X[5, 19, 6, 18], X[19, 7, 20, 6], X[7, 21, 8, 20], X[21, 9, 22, 8],X[9, 23, 10, 22], X[23, 11, 24, 10]] |
In[4]:= | GaussCode[TorusKnot[13, 2]] |
Out[4]= | GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 1, -2, 3] |
In[5]:= | BR[TorusKnot[13, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[13, 2]][t] |
Out[6]= | -6 -5 -4 -3 -2 1 2 3 4 5 6 |
In[7]:= | Conway[TorusKnot[13, 2]][z] |
Out[7]= | 2 4 6 8 10 12 1 + 21 z + 70 z + 84 z + 45 z + 11 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[13, 2]], KnotSignature[TorusKnot[13, 2]]} |
Out[9]= | {13, 12} |
In[10]:= | J=Jones[TorusKnot[13, 2]][q] |
Out[10]= | 6 8 9 10 11 12 13 14 15 16 17 18 19 q + q - q + q - q + q - q + q - q + q - q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[13, 2]][q] |
Out[12]= | 22 24 26 28 30 50 52 54 q + q + 2 q + q + q - q - q - q |
In[13]:= | Kauffman[TorusKnot[13, 2]][a, z] |
Out[13]= | 2 26 7 z z z z z z 6 z z 2 z |
In[14]:= | {Vassiliev[2][TorusKnot[13, 2]], Vassiliev[3][TorusKnot[13, 2]]} |
Out[14]= | {0, 91} |
In[15]:= | Kh[TorusKnot[13, 2]][q, t] |
Out[15]= | 11 13 15 2 19 3 19 4 23 5 23 6 27 7 |