The Kauffman Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 9: Line 9:
<center><math>L(T_1)+L(T_2) = z\left(L(T_3)+L(T_4)\right)</math></center>
<center><math>L(T_1)+L(T_2) = z\left(L(T_3)+L(T_4)\right)</math></center>


(here <math>T_1</math>, <math>T_2</math>, <math>T_3</math> and <math>T_4</math> are [[Image:backoverslash symbol.gif|24px]], [[Image:slashoverback symbol.gif|24px]], [[Image:vsmoothing symbol.gif|24px]] and [[Image:hsmoothing symbol.gif|24px]], respectively, and by the initial condition $L(\bigcirc)=1$.
(here <math>T_1</math>, <math>T_2</math>, <math>T_3</math> and <math>T_4</math> are [[Image:backoverslash symbol.gif|24px]], [[Image:slashoverback symbol.gif|24px]], [[Image:vsmoothing symbol.gif|24px]] and [[Image:hsmoothing symbol.gif|24px]], respectively), and by the initial condition <math>L(U)=1</math> where <math>U</math> is the unknot [[Image:BigCirc symbol.gif|24px]].


{\tt KnotTheory`} knows about the Kauffman polynomial:
{\tt KnotTheory`} knows about the Kauffman polynomial:

Revision as of 12:04, 28 August 2005


The Kauffman polynomial (see [Kauffman]) of a knot or link is where is the writhe of (see How is the Jones Polynomial Computed?) and where is the regular isotopy invariant defined by the skein relations

(here is a strand and is the same strand with a kink added) and

(here , , and are Backoverslash symbol.gif, Slashoverback symbol.gif, Vsmoothing symbol.gif and Hsmoothing symbol.gif, respectively), and by the initial condition where is the unknot BigCirc symbol.gif.

{\tt KnotTheory`} knows about the Kauffman polynomial:

\latexhtml{\small (for {\tt In[1]} see Section~\ref{sec:Setup}.)}{\htmlref{{\tt In[1]}}{sec:Setup}} %<* InOut[1] *>

\index{Kauffman, Louis} \index{Morrison, Scott} <* HelpBox[Kauffman] *>

Thus, for example, here's the Kauffman polynomial of the knot \hlink{../Knots/5.2.html}{$5_2$}:

<*InOut@"Kauffman[Knot[5, 2]][a, z]"*> \vskip 6pt

\index{Jones polynomial} \index{Jones@{\tt Jones}} It is well known that the Jones polynomial is related to the Kauffman polynomial via \[ J(L)(q) = (-1)^cL(K)(-q^{-3/4},\,q^{1/4}+q^{-1/4}), \] where $K$ is some knot or link and where $c$ is the number of components of $K$. Let us verify this fact for the torus knot \hlink{../TorusKnots/8.3.html}{$T(8,3)$}:

<*InOut@"K = TorusKnot[8, 3];"*> <*InOut@"Simplify[{\n

 (-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)],\n
 Jones[K][q]\n

}]"*>

[Kauffman] ^  L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 312 (1990) 417-471.