T(9,5): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- Script generated - do not edit! -->
<!-- -->


<!-- -->
<!-- -->
Line 10: Line 10:
|- valign=top
|- valign=top
|[[Image:{{PAGENAME}}.jpg]]
|[[Image:{{PAGENAME}}.jpg]]
|{{Torus Knot Site Links|m=3|n=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-2,3,-1,2,-3,1/goTop.html}}
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-19,-22,-25,29,30,31,32,-36,-3,-6,-9,13,14,15,16,-20,-23,-26,-29,33,34,35,36,-4,-7,-10,-13,17,18,19,20,-24,-27,-30,-33,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-28,-31,-34,-1,5,6,7,8,-12,-15,-18,-21,25,26,27,28,-32,-35,-2,-5,9,10,11,12,-16/goTop.html {{PAGENAME}}'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!

Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/9.5.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!


{{:{{PAGENAME}} Quick Notes}}
{{:{{PAGENAME}} Quick Notes}}
Line 22: Line 20:


{{Knot Presentations}}
{{Knot Presentations}}

===Knot presentations===

{|
|'''[[Planar Diagrams|Planar diagram presentation]]'''
|style="padding-left: 1em;" | X<sub>51,37,52,36</sub> X<sub>66,38,67,37</sub> X<sub>9,39,10,38</sub> X<sub>24,40,25,39</sub> X<sub>67,53,68,52</sub> X<sub>10,54,11,53</sub> X<sub>25,55,26,54</sub> X<sub>40,56,41,55</sub> X<sub>11,69,12,68</sub> X<sub>26,70,27,69</sub> X<sub>41,71,42,70</sub> X<sub>56,72,57,71</sub> X<sub>27,13,28,12</sub> X<sub>42,14,43,13</sub> X<sub>57,15,58,14</sub> X<sub>72,16,1,15</sub> X<sub>43,29,44,28</sub> X<sub>58,30,59,29</sub> X<sub>1,31,2,30</sub> X<sub>16,32,17,31</sub> X<sub>59,45,60,44</sub> X<sub>2,46,3,45</sub> X<sub>17,47,18,46</sub> X<sub>32,48,33,47</sub> X<sub>3,61,4,60</sub> X<sub>18,62,19,61</sub> X<sub>33,63,34,62</sub> X<sub>48,64,49,63</sub> X<sub>19,5,20,4</sub> X<sub>34,6,35,5</sub> X<sub>49,7,50,6</sub> X<sub>64,8,65,7</sub> X<sub>35,21,36,20</sub> X<sub>50,22,51,21</sub> X<sub>65,23,66,22</sub> X<sub>8,24,9,23</sub>
|-
|'''[[Gauss Codes|Gauss code]]'''
|style="padding-left: 1em;" | <math>\{-19,-22,-25,29,30,31,32,-36,-3,-6,-9,13,14,15,16,-20,-23,-26,-29,33,34,35,36,-4,-7,-10,-13,17,18,19,20,-24,-27,-30,-33,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-28,-31,-34,-1,5,6,7,8,-12,-15,-18,-21,25,26,27,28,-32,-35,-2,-5,9,10,11,12,-16\}</math>
|-
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]'''
|style="padding-left: 1em;" | 30 60 -34 -64 38 68 -42 -72 46 4 -50 -8 54 12 -58 -16 62 20 -66 -24 70 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 52 -26 -56
|}

{{Polynomial Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}
Line 45: Line 29:
<center><table border=1>
<center><table border=1>
<tr align=center>
<tr align=center>
<td width=7.69231%><table cellpadding=0 cellspacing=0>
<td width=25.%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=12.5%>0</td ><td width=12.5%>1</td ><td width=12.5%>2</td ><td width=12.5%>3</td ><td width=25.%>&chi;</td></tr>
<td width=3.84615%>0</td ><td width=3.84615%>1</td ><td width=3.84615%>2</td ><td width=3.84615%>3</td ><td width=3.84615%>4</td ><td width=3.84615%>5</td ><td width=3.84615%>6</td ><td width=3.84615%>7</td ><td width=3.84615%>8</td ><td width=3.84615%>9</td ><td width=3.84615%>10</td ><td width=3.84615%>11</td ><td width=3.84615%>12</td ><td width=3.84615%>13</td ><td width=3.84615%>14</td ><td width=3.84615%>15</td ><td width=3.84615%>16</td ><td width=3.84615%>17</td ><td width=3.84615%>18</td ><td width=3.84615%>19</td ><td width=3.84615%>20</td ><td width=3.84615%>21</td ><td width=7.69231%>&chi;</td></tr>
<tr align=center><td>63</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=red>1</td><td>0</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>61</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
<tr align=center><td>59</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=red>2</td><td bgcolor=red>1</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>57</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>55</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>3</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>53</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=red>2</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=red>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>51</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>49</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>3</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>47</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>2</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>45</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>43</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=red>2</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>41</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>39</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>37</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>35</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>33</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>31</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table></center>


Line 78: Line 50:
</tr>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[3, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>36</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[3, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[51, 37, 52, 36], X[66, 38, 67, 37], X[9, 39, 10, 38],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[3, 1, 4, 6], X[1, 5, 2, 4], X[5, 3, 6, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[3, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-2, 3, -1, 2, -3, 1]</nowiki></pre></td></tr>
X[24, 40, 25, 39], X[67, 53, 68, 52], X[10, 54, 11, 53],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[3, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1}]</nowiki></pre></td></tr>
X[25, 55, 26, 54], X[40, 56, 41, 55], X[11, 69, 12, 68],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[3, 2]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1
X[26, 70, 27, 69], X[41, 71, 42, 70], X[56, 72, 57, 71],
-1 + - + t
t</nowiki></pre></td></tr>
X[27, 13, 28, 12], X[42, 14, 43, 13], X[57, 15, 58, 14],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[3, 2]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
X[72, 16, 1, 15], X[43, 29, 44, 28], X[58, 30, 59, 29],
1 + z</nowiki></pre></td></tr>
X[1, 31, 2, 30], X[16, 32, 17, 31], X[59, 45, 60, 44],
X[2, 46, 3, 45], X[17, 47, 18, 46], X[32, 48, 33, 47],
X[3, 61, 4, 60], X[18, 62, 19, 61], X[33, 63, 34, 62],
X[48, 64, 49, 63], X[19, 5, 20, 4], X[34, 6, 35, 5], X[49, 7, 50, 6],
X[64, 8, 65, 7], X[35, 21, 36, 20], X[50, 22, 51, 21],
X[65, 23, 66, 22], X[8, 24, 9, 23]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-19, -22, -25, 29, 30, 31, 32, -36, -3, -6, -9, 13, 14, 15,
16, -20, -23, -26, -29, 33, 34, 35, 36, -4, -7, -10, -13, 17, 18, 19,
20, -24, -27, -30, -33, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23,
24, -28, -31, -34, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26, 27,
28, -32, -35, -2, -5, 9, 10, 11, 12, -16]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1,
2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[9, 5]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -15 -11 -10 -7 -5 -2 2 5 7 10
-1 + t - t + t - t + t - t + t + t - t + t - t +
11 15 16
t - t + t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[9, 5]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
1 + 80 z + 1772 z + 17094 z + 87560 z + 267421 z + 526423 z +
14 16 18 20 22
703851 z + 661810 z + 447240 z + 219625 z + 78431 z +
24 26 28 30 32
20150 z + 3627 z + 434 z + 31 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[3, 1]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[9, 5]], KnotSignature[TorusKnot[9, 5]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[3, 2]], KnotSignature[TorusKnot[3, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 24}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[9, 5]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[3, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 16 18 20 26 28
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 4
q + q + q - q - q</nowiki></pre></td></tr>
q + q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[3, 1]}</nowiki></pre></td></tr>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[9, 5]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[3, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 12 14
q + q + 2 q + q - q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[9, 5]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[3, 2]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[9, 5]], Vassiliev[3][TorusKnot[9, 5]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
-4 2 z z z z
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 600}</nowiki></pre></td></tr>
-a - -- + -- + -- + -- + --
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[9, 5]][q, t]</nowiki></pre></td></tr>
2 5 3 4 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 31 33 35 2 39 3 37 4 39 4 41 5 43 5
q + q + q t + q t + q t + q t + q t + q t +
a a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr>
39 6 41 6 43 7 45 7 41 8 43 8 45 9
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[3, 2]][q, t]</nowiki></pre></td></tr>
q t + q t + q t + q t + q t + 2 q t + q t +
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 2 9 3
q + q + q t + q t</nowiki></pre></td></tr>
47 9 45 10 49 11 47 12 49 12 53 12
2 q t + 2 q t + 3 q t + 2 q t + 2 q t + q t +
51 13 53 13 49 14 51 14 55 14 53 15
3 q t + 2 q t + q t + 2 q t + q t + 2 q t +
55 15 53 16 57 16 59 16 57 17 55 18
3 q t + 2 q t + q t + q t + 3 q t + q t +
57 18 61 18 59 19 61 19 59 20 63 20 63 21
q t + q t + 2 q t + q t + q t + q t + q t</nowiki></pre></td></tr>
</table>
</table>

{{Category:Knot Page}}

Revision as of 18:42, 28 August 2005


T(35,2).jpg

T(35,2)

File:T(37,2).jpg

T(37,2)

T(9,5).jpg Visit [[[:Template:KnotilusURL]] T(9,5)'s page] at Knotilus!

Visit T(9,5)'s page at the original Knot Atlas!

T(9,5) Quick Notes


T(9,5) Further Notes and Views

Knot presentations

Planar diagram presentation X51,37,52,36 X66,38,67,37 X9,39,10,38 X24,40,25,39 X67,53,68,52 X10,54,11,53 X25,55,26,54 X40,56,41,55 X11,69,12,68 X26,70,27,69 X41,71,42,70 X56,72,57,71 X27,13,28,12 X42,14,43,13 X57,15,58,14 X72,16,1,15 X43,29,44,28 X58,30,59,29 X1,31,2,30 X16,32,17,31 X59,45,60,44 X2,46,3,45 X17,47,18,46 X32,48,33,47 X3,61,4,60 X18,62,19,61 X33,63,34,62 X48,64,49,63 X19,5,20,4 X34,6,35,5 X49,7,50,6 X64,8,65,7 X35,21,36,20 X50,22,51,21 X65,23,66,22 X8,24,9,23
Gauss code -19, -22, -25, 29, 30, 31, 32, -36, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -29, 33, 34, 35, 36, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -30, -33, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -34, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26, 27, 28, -32, -35, -2, -5, 9, 10, 11, 12, -16
Dowker-Thistlethwaite code 30 60 -34 -64 38 68 -42 -72 46 4 -50 -8 54 12 -58 -16 62 20 -66 -24 70 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 52 -26 -56
Conway Notation Data:T(9,5)/Conway Notation

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 1, 24 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources) Data:T(9,5)/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:T(9,5)/Kauffman Polynomial
The A2 invariant Data:T(9,5)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(9,5)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (80, 600)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(9,5)/V 2,1 Data:T(9,5)/V 3,1 Data:T(9,5)/V 4,1 Data:T(9,5)/V 4,2 Data:T(9,5)/V 4,3 Data:T(9,5)/V 5,1 Data:T(9,5)/V 5,2 Data:T(9,5)/V 5,3 Data:T(9,5)/V 5,4 Data:T(9,5)/V 6,1 Data:T(9,5)/V 6,2 Data:T(9,5)/V 6,3 Data:T(9,5)/V 6,4 Data:T(9,5)/V 6,5 Data:T(9,5)/V 6,6 Data:T(9,5)/V 6,7 Data:T(9,5)/V 6,8 Data:T(9,5)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 24 is the signature of T(9,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
0123χ
9   1-1
7    0
5  1 1
31   1
11   1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[3, 2]]
Out[2]=  
3
In[3]:=
PD[TorusKnot[3, 2]]
Out[3]=  
PD[X[3, 1, 4, 6], X[1, 5, 2, 4], X[5, 3, 6, 2]]
In[4]:=
GaussCode[TorusKnot[3, 2]]
Out[4]=  
GaussCode[-2, 3, -1, 2, -3, 1]
In[5]:=
BR[TorusKnot[3, 2]]
Out[5]=  
BR[2, {1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[3, 2]][t]
Out[6]=  
     1

-1 + - + t

t
In[7]:=
Conway[TorusKnot[3, 2]][z]
Out[7]=  
     2
1 + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[3, 1]}
In[9]:=
{KnotDet[TorusKnot[3, 2]], KnotSignature[TorusKnot[3, 2]]}
Out[9]=  
{3, 2}
In[10]:=
J=Jones[TorusKnot[3, 2]][q]
Out[10]=  
     3    4
q + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[3, 1]}
In[12]:=
A2Invariant[TorusKnot[3, 2]][q]
Out[12]=  
 2    4      6    8    12    14
q  + q  + 2 q  + q  - q   - q
In[13]:=
Kauffman[TorusKnot[3, 2]][a, z]
Out[13]=  
                       2    2
 -4   2    z    z    z    z

-a - -- + -- + -- + -- + --

       2    5    3    4    2
a a a a a
In[14]:=
{Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]}
Out[14]=  
{0, 1}
In[15]:=
Kh[TorusKnot[3, 2]][q, t]
Out[15]=  
     3    5  2    9  3
q + q  + q  t  + q  t
This category should contain all the individual knots pages, like 7_5, K11n67, L8a2 and T(5,3)