T(25,2): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- |
<!-- --> |
||
<!-- --> |
<!-- --> |
||
Line 10: | Line 10: | ||
|- valign=top |
|- valign=top |
||
|[[Image:{{PAGENAME}}.jpg]] |
|[[Image:{{PAGENAME}}.jpg]] |
||
| |
|{{Torus Knot Site Links|m=25|n=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20,21,-22,23,-24,25,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,1,-2,3/goTop.html}} |
||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/25.2.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|||
{{:{{PAGENAME}} Quick Notes}} |
{{:{{PAGENAME}} Quick Notes}} |
||
Line 22: | Line 20: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
===Knot presentations=== |
|||
{| |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
|style="padding-left: 1em;" | X<sub>23,49,24,48</sub> X<sub>49,25,50,24</sub> X<sub>25,1,26,50</sub> X<sub>1,27,2,26</sub> X<sub>27,3,28,2</sub> X<sub>3,29,4,28</sub> X<sub>29,5,30,4</sub> X<sub>5,31,6,30</sub> X<sub>31,7,32,6</sub> X<sub>7,33,8,32</sub> X<sub>33,9,34,8</sub> X<sub>9,35,10,34</sub> X<sub>35,11,36,10</sub> X<sub>11,37,12,36</sub> X<sub>37,13,38,12</sub> X<sub>13,39,14,38</sub> X<sub>39,15,40,14</sub> X<sub>15,41,16,40</sub> X<sub>41,17,42,16</sub> X<sub>17,43,18,42</sub> X<sub>43,19,44,18</sub> X<sub>19,45,20,44</sub> X<sub>45,21,46,20</sub> X<sub>21,47,22,46</sub> X<sub>47,23,48,22</sub> |
|||
|- |
|||
|'''[[Gauss Codes|Gauss code]]''' |
|||
|style="padding-left: 1em;" | <math>\{-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20,21,-22,23,-24,25,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,1,-2,3\}</math> |
|||
|- |
|||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|||
|style="padding-left: 1em;" | 26 28 30 32 34 36 38 40 42 44 46 48 50 2 4 6 8 10 12 14 16 18 20 22 24 |
|||
|} |
|||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 166: | Line 150: | ||
q t + q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
{{Category:Knot Page}} |
Revision as of 18:42, 28 August 2005
|
|
Visit [[[:Template:KnotilusURL]] T(25,2)'s page] at Knotilus!
Visit T(25,2)'s page at the original Knot Atlas! |
T(25,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X23,49,24,48 X49,25,50,24 X25,1,26,50 X1,27,2,26 X27,3,28,2 X3,29,4,28 X29,5,30,4 X5,31,6,30 X31,7,32,6 X7,33,8,32 X33,9,34,8 X9,35,10,34 X35,11,36,10 X11,37,12,36 X37,13,38,12 X13,39,14,38 X39,15,40,14 X15,41,16,40 X41,17,42,16 X17,43,18,42 X43,19,44,18 X19,45,20,44 X45,21,46,20 X21,47,22,46 X47,23,48,22 |
Gauss code | -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 1, -2, 3 |
Dowker-Thistlethwaite code | 26 28 30 32 34 36 38 40 42 44 46 48 50 2 4 6 8 10 12 14 16 18 20 22 24 |
Conway Notation | Data:T(25,2)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(25,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 25, 24 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (78, 650) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 24 is the signature of T(25,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | χ | |||||||||
75 | 1 | -1 | ||||||||||||||||||||||||||||||||||
73 | 0 | |||||||||||||||||||||||||||||||||||
71 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||
69 | 0 | |||||||||||||||||||||||||||||||||||
67 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||
65 | 0 | |||||||||||||||||||||||||||||||||||
63 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||
61 | 0 | |||||||||||||||||||||||||||||||||||
59 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||
57 | 0 | |||||||||||||||||||||||||||||||||||
55 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||
53 | 0 | |||||||||||||||||||||||||||||||||||
51 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||
49 | 0 | |||||||||||||||||||||||||||||||||||
47 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||
45 | 0 | |||||||||||||||||||||||||||||||||||
43 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||
41 | 0 | |||||||||||||||||||||||||||||||||||
39 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||
37 | 0 | |||||||||||||||||||||||||||||||||||
35 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||
33 | 0 | |||||||||||||||||||||||||||||||||||
31 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||
29 | 0 | |||||||||||||||||||||||||||||||||||
27 | 1 | 1 | ||||||||||||||||||||||||||||||||||
25 | 1 | 1 | ||||||||||||||||||||||||||||||||||
23 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[25, 2]] |
Out[2]= | 25 |
In[3]:= | PD[TorusKnot[25, 2]] |
Out[3]= | PD[X[23, 49, 24, 48], X[49, 25, 50, 24], X[25, 1, 26, 50],X[1, 27, 2, 26], X[27, 3, 28, 2], X[3, 29, 4, 28], X[29, 5, 30, 4], X[5, 31, 6, 30], X[31, 7, 32, 6], X[7, 33, 8, 32], X[33, 9, 34, 8], X[9, 35, 10, 34], X[35, 11, 36, 10], X[11, 37, 12, 36], X[37, 13, 38, 12], X[13, 39, 14, 38], X[39, 15, 40, 14], X[15, 41, 16, 40], X[41, 17, 42, 16], X[17, 43, 18, 42], X[43, 19, 44, 18], X[19, 45, 20, 44], X[45, 21, 46, 20],X[21, 47, 22, 46], X[47, 23, 48, 22]] |
In[4]:= | GaussCode[TorusKnot[25, 2]] |
Out[4]= | GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18,19, -20, 21, -22, 23, -24, 25, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25,1, -2, 3] |
In[5]:= | BR[TorusKnot[25, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[25, 2]][t] |
Out[6]= | -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 |
In[7]:= | Conway[TorusKnot[25, 2]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[25, 2]], KnotSignature[TorusKnot[25, 2]]} |
Out[9]= | {25, 24} |
In[10]:= | J=Jones[TorusKnot[25, 2]][q] |
Out[10]= | 12 14 15 16 17 18 19 20 21 22 23 24 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[25, 2]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[25, 2]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[25, 2]], Vassiliev[3][TorusKnot[25, 2]]} |
Out[14]= | {0, 650} |
In[15]:= | Kh[TorusKnot[25, 2]][q, t] |
Out[15]= | 23 25 27 2 31 3 31 4 35 5 35 6 39 7 |
This category should contain all the individual knots pages, like 7_5, K11n67, L8a2 and T(5,3)