T(7,6): Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- |
<!-- --> |
||
<!-- --> |
<!-- --> |
||
| Line 10: | Line 10: | ||
|- valign=top |
|- valign=top |
||
|[[Image:{{PAGENAME}}.jpg]] |
|[[Image:{{PAGENAME}}.jpg]] |
||
| |
|{{Torus Knot Site Links|m=7|n=6|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-18,-22,-26,31,32,33,34,35,-5,-9,-13,-17,-21,26,27,28,29,30,-35,-4,-8,-12,-16,21,22,23,24,25,-30,-34,-3,-7,-11,16,17,18,19,20,-25,-29,-33,-2,-6,11,12,13,14,15,-20,-24,-28,-32,-1,6,7,8,9,10,-15,-19,-23,-27,-31,1,2,3,4,5,-10,-14/goTop.html}} |
||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/7.6.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|||
{{:{{PAGENAME}} Quick Notes}} |
{{:{{PAGENAME}} Quick Notes}} |
||
| Line 22: | Line 20: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
===Knot presentations=== |
|||
{| |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
|style="padding-left: 1em;" | X<sub>53,65,54,64</sub> X<sub>42,66,43,65</sub> X<sub>31,67,32,66</sub> X<sub>20,68,21,67</sub> X<sub>9,69,10,68</sub> X<sub>43,55,44,54</sub> X<sub>32,56,33,55</sub> X<sub>21,57,22,56</sub> X<sub>10,58,11,57</sub> X<sub>69,59,70,58</sub> X<sub>33,45,34,44</sub> X<sub>22,46,23,45</sub> X<sub>11,47,12,46</sub> X<sub>70,48,1,47</sub> X<sub>59,49,60,48</sub> X<sub>23,35,24,34</sub> X<sub>12,36,13,35</sub> X<sub>1,37,2,36</sub> X<sub>60,38,61,37</sub> X<sub>49,39,50,38</sub> X<sub>13,25,14,24</sub> X<sub>2,26,3,25</sub> X<sub>61,27,62,26</sub> X<sub>50,28,51,27</sub> X<sub>39,29,40,28</sub> X<sub>3,15,4,14</sub> X<sub>62,16,63,15</sub> X<sub>51,17,52,16</sub> X<sub>40,18,41,17</sub> X<sub>29,19,30,18</sub> X<sub>63,5,64,4</sub> X<sub>52,6,53,5</sub> X<sub>41,7,42,6</sub> X<sub>30,8,31,7</sub> X<sub>19,9,20,8</sub> |
|||
|- |
|||
|'''[[Gauss Codes|Gauss code]]''' |
|||
|style="padding-left: 1em;" | <math>\{-18,-22,-26,31,32,33,34,35,-5,-9,-13,-17,-21,26,27,28,29,30,-35,-4,-8,-12,-16,21,22,23,24,25,-30,-34,-3,-7,-11,16,17,18,19,20,-25,-29,-33,-2,-6,11,12,13,14,15,-20,-24,-28,-32,-1,6,7,8,9,10,-15,-19,-23,-27,-31,1,2,3,4,5,-10,-14\}</math> |
|||
|- |
|||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|||
|style="padding-left: 1em;" | 36 14 -52 -30 68 46 24 -62 -40 8 56 34 -2 -50 18 66 44 -12 -60 28 6 54 -22 -70 38 16 64 -32 -10 48 26 4 -42 -20 58 |
|||
|} |
|||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
| Line 163: | Line 147: | ||
q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
{{Category:Knot Page}} |
|||
Revision as of 18:43, 28 August 2005
|
|
|
|
Visit [[[:Template:KnotilusURL]] T(7,6)'s page] at Knotilus!
Visit T(7,6)'s page at the original Knot Atlas! |
T(7,6) Further Notes and Views
Knot presentations
| Planar diagram presentation | X53,65,54,64 X42,66,43,65 X31,67,32,66 X20,68,21,67 X9,69,10,68 X43,55,44,54 X32,56,33,55 X21,57,22,56 X10,58,11,57 X69,59,70,58 X33,45,34,44 X22,46,23,45 X11,47,12,46 X70,48,1,47 X59,49,60,48 X23,35,24,34 X12,36,13,35 X1,37,2,36 X60,38,61,37 X49,39,50,38 X13,25,14,24 X2,26,3,25 X61,27,62,26 X50,28,51,27 X39,29,40,28 X3,15,4,14 X62,16,63,15 X51,17,52,16 X40,18,41,17 X29,19,30,18 X63,5,64,4 X52,6,53,5 X41,7,42,6 X30,8,31,7 X19,9,20,8 |
| Gauss code | -18, -22, -26, 31, 32, 33, 34, 35, -5, -9, -13, -17, -21, 26, 27, 28, 29, 30, -35, -4, -8, -12, -16, 21, 22, 23, 24, 25, -30, -34, -3, -7, -11, 16, 17, 18, 19, 20, -25, -29, -33, -2, -6, 11, 12, 13, 14, 15, -20, -24, -28, -32, -1, 6, 7, 8, 9, 10, -15, -19, -23, -27, -31, 1, 2, 3, 4, 5, -10, -14 |
| Dowker-Thistlethwaite code | 36 14 -52 -30 68 46 24 -62 -40 8 56 34 -2 -50 18 66 44 -12 -60 28 6 54 -22 -70 38 16 64 -32 -10 48 26 4 -42 -20 58 |
| Conway Notation | Data:T(7,6)/Conway Notation |
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^{15}-t^{14}+t^9-t^7+t^3-1+ t^{-3} - t^{-7} + t^{-9} - t^{-14} + t^{-15} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{30}+29 z^{28}+377 z^{26}+2900 z^{24}+14674 z^{22}+51359 z^{20}+127282 z^{18}+224826 z^{16}+281144 z^{14}+244074 z^{12}+142208 z^{10}+52844 z^8+11649 z^6+1365 z^4+70 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 7, 18 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{26}-q^{24}-q^{22}+q^{21}+q^{19}+q^{17}+q^{15}} |
| HOMFLY-PT polynomial (db, data sources) | Data:T(7,6)/HOMFLYPT Polynomial |
| Kauffman polynomial (db, data sources) | Data:T(7,6)/Kauffman Polynomial |
| The A2 invariant | Data:T(7,6)/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:T(7,6)/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(7,6)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^{15}-t^{14}+t^9-t^7+t^3-1+ t^{-3} - t^{-7} + t^{-9} - t^{-14} + t^{-15} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{30}+29 z^{28}+377 z^{26}+2900 z^{24}+14674 z^{22}+51359 z^{20}+127282 z^{18}+224826 z^{16}+281144 z^{14}+244074 z^{12}+142208 z^{10}+52844 z^8+11649 z^6+1365 z^4+70 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 7, 18 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{26}-q^{24}-q^{22}+q^{21}+q^{19}+q^{17}+q^{15}} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(7,6)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(7,6)/Kauffman Polynomial |
Vassiliev invariants
| V2 and V3: | (70, 490) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 18 is the signature of T(7,6). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | χ | |||||||||
| 57 | 1 | 1 | 0 | |||||||||||||||||||||||||||
| 55 | 1 | 1 | 0 | |||||||||||||||||||||||||||
| 53 | 1 | 2 | 1 | 1 | -1 | |||||||||||||||||||||||||
| 51 | 1 | 1 | 2 | 1 | -1 | |||||||||||||||||||||||||
| 49 | 3 | 1 | 1 | -1 | ||||||||||||||||||||||||||
| 47 | 3 | 1 | 1 | -1 | ||||||||||||||||||||||||||
| 45 | 2 | 1 | 2 | -1 | ||||||||||||||||||||||||||
| 43 | 1 | 1 | 2 | 0 | ||||||||||||||||||||||||||
| 41 | 1 | 1 | 2 | 1 | 1 | |||||||||||||||||||||||||
| 39 | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||||
| 37 | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||||
| 35 | 1 | 1 | ||||||||||||||||||||||||||||
| 33 | 1 | 1 | ||||||||||||||||||||||||||||
| 31 | 1 | 1 | ||||||||||||||||||||||||||||
| 29 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[7, 6]] |
Out[2]= | 35 |
In[3]:= | PD[TorusKnot[7, 6]] |
Out[3]= | PD[X[53, 65, 54, 64], X[42, 66, 43, 65], X[31, 67, 32, 66],X[20, 68, 21, 67], X[9, 69, 10, 68], X[43, 55, 44, 54], X[32, 56, 33, 55], X[21, 57, 22, 56], X[10, 58, 11, 57], X[69, 59, 70, 58], X[33, 45, 34, 44], X[22, 46, 23, 45], X[11, 47, 12, 46], X[70, 48, 1, 47], X[59, 49, 60, 48], X[23, 35, 24, 34], X[12, 36, 13, 35], X[1, 37, 2, 36], X[60, 38, 61, 37], X[49, 39, 50, 38], X[13, 25, 14, 24], X[2, 26, 3, 25], X[61, 27, 62, 26], X[50, 28, 51, 27], X[39, 29, 40, 28], X[3, 15, 4, 14], X[62, 16, 63, 15], X[51, 17, 52, 16], X[40, 18, 41, 17], X[29, 19, 30, 18], X[63, 5, 64, 4], X[52, 6, 53, 5], X[41, 7, 42, 6], X[30, 8, 31, 7],X[19, 9, 20, 8]] |
In[4]:= | GaussCode[TorusKnot[7, 6]] |
Out[4]= | GaussCode[-18, -22, -26, 31, 32, 33, 34, 35, -5, -9, -13, -17, -21, 26,27, 28, 29, 30, -35, -4, -8, -12, -16, 21, 22, 23, 24, 25, -30, -34, -3, -7, -11, 16, 17, 18, 19, 20, -25, -29, -33, -2, -6, 11, 12, 13, 14, 15, -20, -24, -28, -32, -1, 6, 7, 8, 9, 10, -15, -19, -23, -27,-31, 1, 2, 3, 4, 5, -10, -14] |
In[5]:= | BR[TorusKnot[7, 6]] |
Out[5]= | BR[6, {1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1,
2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5}] |
In[6]:= | alex = Alexander[TorusKnot[7, 6]][t] |
Out[6]= | -15 -14 -9 -7 -3 3 7 9 14 15 -1 + t - t + t - t + t + t - t + t - t + t |
In[7]:= | Conway[TorusKnot[7, 6]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[7, 6]], KnotSignature[TorusKnot[7, 6]]} |
Out[9]= | {7, 18} |
In[10]:= | J=Jones[TorusKnot[7, 6]][q] |
Out[10]= | 15 17 19 21 22 24 26 q + q + q + q - q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[7, 6]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[7, 6]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[7, 6]], Vassiliev[3][TorusKnot[7, 6]]} |
Out[14]= | {0, 490} |
In[15]:= | Kh[TorusKnot[7, 6]][q, t] |
Out[15]= | 29 31 33 2 37 3 35 4 37 4 39 5 41 5 |
This category should contain all the individual knots pages, like 7_5, K11n67, L8a2 and T(5,3)


