9 21: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=21|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,7,-8,9,-2,3,-4,2,-5,6,-9,8,-7,5/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=21|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,7,-8,9,-2,3,-4,2,-5,6,-9,8,-7,5/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>-1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 132: Line 124:
q t + q t</nowiki></pre></td></tr>
q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:07, 28 August 2005

9 20.gif

9_20

9 22.gif

9_22

9 21.gif Visit 9 21's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 21's page at Knotilus!

Visit 9 21's page at the original Knot Atlas!

9 21 Quick Notes


9 21 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X13,1,14,18 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8
Gauss code -1, 4, -3, 1, -6, 7, -8, 9, -2, 3, -4, 2, -5, 6, -9, 8, -7, 5
Dowker-Thistlethwaite code 4 10 14 16 12 2 18 8 6
Conway Notation [31122]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-1][-10]
Hyperbolic Volume 10.1833
A-Polynomial See Data:9 21/A-polynomial

[edit Notes for 9 21's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 9 21's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 43, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (3, 6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 21. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        1 1
13       31 -2
11      31  2
9     43   -1
7    43    1
5   24     2
3  34      -1
1 13       2
-1 2        -2
-31         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 21]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 21]]
Out[3]=  
PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], 
 X[13, 1, 14, 18], X[5, 15, 6, 14], X[17, 7, 18, 6], X[7, 17, 8, 16], 

X[15, 9, 16, 8]]
In[4]:=
GaussCode[Knot[9, 21]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -6, 7, -8, 9, -2, 3, -4, 2, -5, 6, -9, 8, -7, 5]
In[5]:=
BR[Knot[9, 21]]
Out[5]=  
BR[5, {1, 1, 2, -1, 2, -3, 2, 4, -3, 4}]
In[6]:=
alex = Alexander[Knot[9, 21]][t]
Out[6]=  
      2    11             2

-17 - -- + -- + 11 t - 2 t

      2   t
t
In[7]:=
Conway[Knot[9, 21]][z]
Out[7]=  
       2      4
1 + 3 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 21]}
In[9]:=
{KnotDet[Knot[9, 21]], KnotSignature[Knot[9, 21]]}
Out[9]=  
{43, 2}
In[10]:=
J=Jones[Knot[9, 21]][q]
Out[10]=  
     1            2      3      4      5      6      7    8

-3 + - + 5 q - 6 q + 8 q - 7 q + 6 q - 4 q + 2 q - q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 21], Knot[11, NonAlternating, 129]}
In[12]:=
A2Invariant[Knot[9, 21]][q]
Out[12]=  
      -4    -2      2    4      6    8    12    14      16    20

-1 + q - q + 2 q - q + 2 q + q + q - q + 2 q - q +

  22    24    26
q - q - q
In[13]:=
Kauffman[Knot[9, 21]][a, z]
Out[13]=  
                                            2      2      2      2
 -8    -6    -2   2 z   3 z   z     2   3 z    5 z    6 z    3 z

-a - a - a + --- - --- - -- - z + ---- + ---- + ---- + ---- -

                   9     5     3          8      6      4      2
                  a     a     a          a      a      a      a

    3      3      3      3           4      4      4      4    5
 3 z    9 z    2 z    4 z     4   5 z    7 z    9 z    6 z    z
 ---- + ---- + ---- - ---- + z  - ---- - ---- - ---- - ---- + -- - 
   9      5      3     a            8      6      4      2     9
  a      a      a                  a      a      a      a     a

    5       5      5      5      6      6      6      6      7
 3 z    10 z    3 z    3 z    2 z    2 z    4 z    4 z    2 z
 ---- - ----- - ---- + ---- + ---- + ---- + ---- + ---- + ---- + 
   7      5       3     a       8      6      4      2      7
  a      a       a             a      a      a      a      a

    7      7    8    8
 5 z    3 z    z    z
 ---- + ---- + -- + --
   5      3     6    4
a a a a
In[14]:=
{Vassiliev[2][Knot[9, 21]], Vassiliev[3][Knot[9, 21]]}
Out[14]=  
{0, 6}
In[15]:=
Kh[Knot[9, 21]][q, t]
Out[15]=  
         3     1      2    q      3        5        5  2      7  2

3 q + 3 q + ----- + --- + - + 4 q t + 2 q t + 4 q t + 4 q t +

             3  2   q t   t
            q  t

    7  3      9  3      9  4      11  4    11  5      13  5    13  6
 3 q  t  + 4 q  t  + 3 q  t  + 3 q   t  + q   t  + 3 q   t  + q   t  + 

  15  6    17  7
q t + q t