7 7: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
||
Line 45: | Line 38: | ||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 118: | Line 110: | ||
2 q t + q t + q t + q t</nowiki></pre></td></tr> |
2 q t + q t + q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
Revision as of 20:11, 28 August 2005
|
|
![]() |
Visit 7 7's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 7 7's page at Knotilus! Visit 7 7's page at the original Knot Atlas! This is the Chinese crown loop of practical knot tying. |
Knot presentations
Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X11,14,12,1 X7,13,8,12 X13,7,14,6 |
Gauss code | -1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -5, 6, -7, 5 |
Dowker-Thistlethwaite code | 4 8 10 12 2 14 6 |
Conway Notation | [21112] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+ t^{-2} -5 t-5 t^{-1} +9} |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4-z^2+1} |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 21, 0 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | |
The A2 invariant | |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-q^{26}-2 q^{24}+q^{22}+q^{20}-2 q^{18}-q^{16}+4 q^{14}+3 q^{12}+2 q^8+6 q^6-2 q^2+1-2 q^{-2} -5 q^{-4} - q^{-6} + q^{-8} - q^{-10} + q^{-12} +5 q^{-14} +3 q^{-16} -2 q^{-18} +2 q^{-22} -2 q^{-24} -3 q^{-26} + q^{-30} + q^{-36} + q^{-38} } |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}+q^{14}+q^8+2 q^4+q^2+2+ q^{-2} + q^{-4} - q^{-6} - q^{-8} -2 q^{-10} -2 q^{-12} - q^{-16} + q^{-18} + q^{-20} + q^{-22} + q^{-24} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{22}+2 q^{20}-3 q^{18}+3 q^{16}-3 q^{14}+3 q^{12}-q^{10}+q^8+2 q^6-q^4+5 q^2-5+6 q^{-2} -5 q^{-4} +4 q^{-6} -4 q^{-8} + q^{-10} - q^{-12} -2 q^{-14} +2 q^{-16} -3 q^{-18} +3 q^{-20} -2 q^{-22} +3 q^{-24} - q^{-26} + q^{-28} } |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-2 q^{32}-2 q^{30}+q^{28}+3 q^{26}-3 q^{22}-q^{20}+4 q^{18}+3 q^{16}-2 q^{12}+q^{10}+2 q^8+q^6-3 q^4-q^2+2+ q^{-2} -2 q^{-4} -2 q^{-6} + q^{-8} +2 q^{-10} -2 q^{-14} + q^{-16} +3 q^{-18} + q^{-20} -3 q^{-22} -2 q^{-24} +2 q^{-26} +3 q^{-28} - q^{-30} -3 q^{-32} - q^{-34} +2 q^{-36} +2 q^{-38} - q^{-40} - q^{-42} + q^{-46} } |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{30}-2 q^{28}+q^{26}-2 q^{24}+3 q^{22}-3 q^{20}+2 q^{18}-q^{16}+3 q^{14}+q^{12}+q^8+4 q^4-3 q^2+4-4 q^{-2} +5 q^{-4} -3 q^{-6} +3 q^{-8} -4 q^{-10} +2 q^{-12} - q^{-14} - q^{-18} -2 q^{-20} +2 q^{-22} -2 q^{-24} +2 q^{-26} -2 q^{-28} +3 q^{-30} - q^{-32} +2 q^{-34} - q^{-36} + q^{-38} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{52}-2 q^{50}+3 q^{48}-4 q^{46}+q^{42}-4 q^{40}+9 q^{38}-9 q^{36}+9 q^{34}-3 q^{32}-4 q^{30}+9 q^{28}-10 q^{26}+9 q^{24}-5 q^{22}-q^{20}+5 q^{18}-4 q^{16}+4 q^{14}+2 q^{12}-7 q^{10}+10 q^8-5 q^6-2 q^4+8 q^2-12+17 q^{-2} -11 q^{-4} +5 q^{-6} +3 q^{-8} -9 q^{-10} +15 q^{-12} -14 q^{-14} +6 q^{-16} - q^{-18} -4 q^{-20} +6 q^{-22} -6 q^{-24} + q^{-26} +3 q^{-28} -7 q^{-30} +5 q^{-32} -4 q^{-34} -5 q^{-36} +10 q^{-38} -11 q^{-40} +9 q^{-42} -4 q^{-44} - q^{-46} +7 q^{-48} -8 q^{-50} +9 q^{-52} -4 q^{-54} + q^{-56} + q^{-58} -3 q^{-60} +3 q^{-62} - q^{-64} + q^{-66} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["7 7"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+ t^{-2} -5 t-5 t^{-1} +9} |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 21, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (-1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 7 7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[7, 7]] |
Out[2]= | 7 |
In[3]:= | PD[Knot[7, 7]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], X[11, 14, 12, 1], X[7, 13, 8, 12], X[13, 7, 14, 6]] |
In[4]:= | GaussCode[Knot[7, 7]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -5, 6, -7, 5] |
In[5]:= | BR[Knot[7, 7]] |
Out[5]= | BR[4, {1, -2, 1, -2, 3, -2, 3}] |
In[6]:= | alex = Alexander[Knot[7, 7]][t] |
Out[6]= | -2 5 2 |
In[7]:= | Conway[Knot[7, 7]][z] |
Out[7]= | 2 4 1 - z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[7, 7], Knot[11, NonAlternating, 28]} |
In[9]:= | {KnotDet[Knot[7, 7]], KnotSignature[Knot[7, 7]]} |
Out[9]= | {21, 0} |
In[10]:= | J=Jones[Knot[7, 7]][q] |
Out[10]= | -3 3 3 2 3 4 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[7, 7]} |
In[12]:= | A2Invariant[Knot[7, 7]][q] |
Out[12]= | -10 -8 -6 2 2 4 6 10 12 14 |
In[13]:= | Kauffman[Knot[7, 7]][a, z] |
Out[13]= | 2 2 3-4 2 2 z 3 z 2 2 z 6 z 2 2 4 z |
In[14]:= | {Vassiliev[2][Knot[7, 7]], Vassiliev[3][Knot[7, 7]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[7, 7]][q, t] |
Out[15]= | 3 1 2 1 1 2 3 3 2 |