8 8: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
| ⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
| ⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
| Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
| Line 46: | Line 39: | ||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
| Line 124: | Line 116: | ||
2 q t + 2 q t + q t + 2 q t + q t + q t + q t</nowiki></pre></td></tr> |
2 q t + 2 q t + q t + 2 q t + q t + q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
|||
Revision as of 19:11, 28 August 2005
|
|
|
|
Visit 8 8's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 8 8's page at Knotilus! Visit 8 8's page at the original Knot Atlas! |
Knot presentations
| Planar diagram presentation | X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X9,1,10,16 X15,11,16,10 X7283 |
| Gauss code | -1, 8, -2, 1, -4, 5, -8, 2, -6, 7, -3, 4, -5, 3, -7, 6 |
| Dowker-Thistlethwaite code | 4 8 12 2 16 14 6 10 |
| Conway Notation | [2312] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 2 t^2-6 t+9-6 t^{-1} +2 t^{-2} }[/math] |
| Conway polynomial | [math]\displaystyle{ 2 z^4+2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 25, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^5+2 q^4-3 q^3+4 q^2-4 q+5-3 q^{-1} +2 q^{-2} - q^{-3} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^4 a^{-2} +z^4-a^2 z^2+2 z^2 a^{-2} -z^2 a^{-4} +2 z^2-a^2+ a^{-2} - a^{-4} +2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^7 a^{-1} +z^7 a^{-3} +4 z^6 a^{-2} +2 z^6 a^{-4} +2 z^6+2 a z^5+z^5 a^{-1} +z^5 a^{-5} +2 a^2 z^4-9 z^4 a^{-2} -6 z^4 a^{-4} -z^4+a^3 z^3-3 z^3 a^{-1} -5 z^3 a^{-3} -3 z^3 a^{-5} -2 a^2 z^2+5 z^2 a^{-2} +4 z^2 a^{-4} -z^2-a^3 z-a z+z a^{-1} +3 z a^{-3} +2 z a^{-5} +a^2- a^{-2} - a^{-4} +2 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{10}-q^4+2 q^2+1+2 q^{-2} + q^{-4} + q^{-8} - q^{-10} - q^{-16} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{52}-q^{50}+2 q^{48}-2 q^{46}-3 q^{40}+4 q^{38}-5 q^{36}+4 q^{34}-5 q^{32}+q^{30}+3 q^{28}-6 q^{26}+8 q^{24}-9 q^{22}+7 q^{20}-4 q^{18}-3 q^{16}+7 q^{14}-8 q^{12}+9 q^{10}-q^8-3 q^6+6 q^4-3 q^2+1+6 q^{-2} -10 q^{-4} +12 q^{-6} -5 q^{-8} +10 q^{-12} -14 q^{-14} +17 q^{-16} -11 q^{-18} +3 q^{-20} +4 q^{-22} -9 q^{-24} +14 q^{-26} -10 q^{-28} +6 q^{-30} + q^{-32} -5 q^{-34} +7 q^{-36} -5 q^{-38} +4 q^{-42} -8 q^{-44} +7 q^{-46} -3 q^{-48} -4 q^{-50} +10 q^{-52} -13 q^{-54} +10 q^{-56} -5 q^{-58} -4 q^{-60} +7 q^{-62} -10 q^{-64} +9 q^{-66} -5 q^{-68} +2 q^{-72} -4 q^{-74} +3 q^{-76} - q^{-78} + q^{-80} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^7+q^5-q^3+2 q+ q^{-1} + q^{-5} - q^{-7} + q^{-9} - q^{-11} }[/math] |
| 2 | [math]\displaystyle{ q^{20}-q^{18}-q^{16}+2 q^{14}-3 q^{12}-q^{10}+5 q^8-3 q^6-2 q^4+5 q^2- q^{-2} + q^{-4} +3 q^{-6} -2 q^{-10} +3 q^{-12} -5 q^{-16} +2 q^{-18} +2 q^{-20} -4 q^{-22} + q^{-24} +3 q^{-26} -2 q^{-28} - q^{-30} + q^{-32} }[/math] |
| 3 | [math]\displaystyle{ -q^{39}+q^{37}+q^{35}-q^{31}+q^{29}+q^{27}-4 q^{25}-q^{23}+5 q^{21}+2 q^{19}-9 q^{17}-4 q^{15}+10 q^{13}+7 q^{11}-11 q^9-7 q^7+7 q^5+11 q^3-3 q-7 q^{-1} + q^{-3} +6 q^{-5} +5 q^{-7} -3 q^{-9} -6 q^{-11} + q^{-13} +9 q^{-15} - q^{-17} -9 q^{-19} -2 q^{-21} +10 q^{-23} +3 q^{-25} -10 q^{-27} -6 q^{-29} +9 q^{-31} +7 q^{-33} -6 q^{-35} -10 q^{-37} +3 q^{-39} +10 q^{-41} -8 q^{-45} -3 q^{-47} +6 q^{-49} +5 q^{-51} -3 q^{-53} -4 q^{-55} +2 q^{-59} + q^{-61} - q^{-63} }[/math] |
| 4 | [math]\displaystyle{ q^{64}-q^{62}-q^{60}-q^{56}+3 q^{54}-q^{52}+q^{50}+2 q^{48}-4 q^{46}+q^{44}-4 q^{42}+5 q^{40}+10 q^{38}-6 q^{36}-8 q^{34}-14 q^{32}+9 q^{30}+26 q^{28}+q^{26}-17 q^{24}-34 q^{22}+3 q^{20}+40 q^{18}+18 q^{16}-11 q^{14}-43 q^{12}-12 q^{10}+30 q^8+27 q^6+10 q^4-27 q^2-21+6 q^{-2} +18 q^{-4} +18 q^{-6} -3 q^{-8} -16 q^{-10} -15 q^{-12} +2 q^{-14} +19 q^{-16} +14 q^{-18} -10 q^{-20} -25 q^{-22} -3 q^{-24} +20 q^{-26} +24 q^{-28} -8 q^{-30} -33 q^{-32} -8 q^{-34} +19 q^{-36} +31 q^{-38} -3 q^{-40} -35 q^{-42} -17 q^{-44} +9 q^{-46} +37 q^{-48} +12 q^{-50} -26 q^{-52} -24 q^{-54} -9 q^{-56} +29 q^{-58} +24 q^{-60} -4 q^{-62} -19 q^{-64} -26 q^{-66} +8 q^{-68} +21 q^{-70} +13 q^{-72} - q^{-74} -22 q^{-76} -8 q^{-78} +4 q^{-80} +12 q^{-82} +11 q^{-84} -7 q^{-86} -7 q^{-88} -5 q^{-90} + q^{-92} +6 q^{-94} + q^{-96} -2 q^{-100} - q^{-102} + q^{-104} }[/math] |
| 5 | [math]\displaystyle{ -q^{95}+q^{93}+q^{91}+q^{87}-q^{85}-3 q^{83}-q^{81}+q^{79}+4 q^{75}+3 q^{73}-2 q^{71}-6 q^{69}-6 q^{67}+9 q^{63}+15 q^{61}+7 q^{59}-16 q^{57}-27 q^{55}-13 q^{53}+18 q^{51}+43 q^{49}+34 q^{47}-19 q^{45}-68 q^{43}-55 q^{41}+10 q^{39}+83 q^{37}+87 q^{35}+7 q^{33}-94 q^{31}-118 q^{29}-36 q^{27}+85 q^{25}+139 q^{23}+63 q^{21}-64 q^{19}-131 q^{17}-93 q^{15}+31 q^{13}+120 q^{11}+99 q^9+3 q^7-78 q^5-93 q^3-33 q+47 q^{-1} +77 q^{-3} +48 q^{-5} -9 q^{-7} -50 q^{-9} -53 q^{-11} -20 q^{-13} +30 q^{-15} +53 q^{-17} +35 q^{-19} -10 q^{-21} -54 q^{-23} -52 q^{-25} +3 q^{-27} +59 q^{-29} +57 q^{-31} +2 q^{-33} -62 q^{-35} -71 q^{-37} -3 q^{-39} +74 q^{-41} +77 q^{-43} +9 q^{-45} -78 q^{-47} -92 q^{-49} -16 q^{-51} +80 q^{-53} +103 q^{-55} +31 q^{-57} -73 q^{-59} -114 q^{-61} -50 q^{-63} +57 q^{-65} +111 q^{-67} +73 q^{-69} -30 q^{-71} -106 q^{-73} -89 q^{-75} +82 q^{-79} +96 q^{-81} +36 q^{-83} -52 q^{-85} -89 q^{-87} -58 q^{-89} +15 q^{-91} +68 q^{-93} +67 q^{-95} +21 q^{-97} -38 q^{-99} -63 q^{-101} -41 q^{-103} +7 q^{-105} +42 q^{-107} +45 q^{-109} +19 q^{-111} -19 q^{-113} -37 q^{-115} -28 q^{-117} - q^{-119} +20 q^{-121} +25 q^{-123} +15 q^{-125} -6 q^{-127} -17 q^{-129} -14 q^{-131} -3 q^{-133} +5 q^{-135} +9 q^{-137} +7 q^{-139} - q^{-141} -4 q^{-143} -3 q^{-145} - q^{-147} +2 q^{-151} + q^{-153} - q^{-155} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ -q^{10}-q^4+2 q^2+1+2 q^{-2} + q^{-4} + q^{-8} - q^{-10} - q^{-16} }[/math] |
| 1,1 | [math]\displaystyle{ q^{28}-2 q^{26}+4 q^{24}-6 q^{22}+9 q^{20}-12 q^{18}+14 q^{16}-20 q^{14}+19 q^{12}-24 q^{10}+22 q^8-22 q^6+18 q^4-4 q^2+20 q^{-2} -27 q^{-4} +44 q^{-6} -48 q^{-8} +56 q^{-10} -52 q^{-12} +48 q^{-14} -40 q^{-16} +24 q^{-18} -15 q^{-20} -4 q^{-22} +14 q^{-24} -24 q^{-26} +31 q^{-28} -32 q^{-30} +30 q^{-32} -24 q^{-34} +17 q^{-36} -12 q^{-38} +6 q^{-40} -2 q^{-42} + q^{-44} }[/math] |
| 2,0 | [math]\displaystyle{ q^{26}-q^{22}+q^{18}-q^{16}-3 q^{14}+2 q^{10}-3 q^8-3 q^6+2 q^4+2 q^2+2+2 q^{-2} +5 q^{-4} +2 q^{-6} +2 q^{-8} +3 q^{-10} + q^{-12} -2 q^{-14} -4 q^{-20} -3 q^{-22} + q^{-26} - q^{-28} - q^{-30} +2 q^{-32} + q^{-34} - q^{-36} - q^{-38} + q^{-42} }[/math] |
| 3,0 | [math]\displaystyle{ -q^{48}+q^{44}+q^{42}-2 q^{38}+2 q^{36}+3 q^{34}+q^{32}-4 q^{30}-5 q^{28}+4 q^{26}+6 q^{24}-q^{22}-10 q^{20}-8 q^{18}+8 q^{16}+9 q^{14}-3 q^{12}-13 q^{10}-8 q^8+8 q^6+6 q^4-4+4 q^{-2} +10 q^{-4} +8 q^{-6} +3 q^{-8} +3 q^{-10} +7 q^{-12} +2 q^{-14} -3 q^{-16} -2 q^{-18} +3 q^{-20} +2 q^{-22} -8 q^{-24} -9 q^{-26} +6 q^{-30} + q^{-32} -10 q^{-34} -7 q^{-36} +4 q^{-38} +8 q^{-40} +2 q^{-42} -8 q^{-44} -5 q^{-46} +3 q^{-48} +7 q^{-50} +4 q^{-52} -5 q^{-54} -4 q^{-56} +5 q^{-60} +4 q^{-62} -2 q^{-64} -3 q^{-66} -3 q^{-68} + q^{-70} +2 q^{-72} + q^{-74} - q^{-78} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{22}-q^{20}+2 q^{16}-3 q^{14}-3 q^{12}+2 q^{10}-3 q^8-3 q^6+5 q^4+q^2+2+4 q^{-2} +3 q^{-4} + q^{-6} +3 q^{-10} +2 q^{-12} -3 q^{-14} + q^{-16} + q^{-18} -5 q^{-20} - q^{-22} + q^{-24} -3 q^{-26} + q^{-28} + q^{-30} - q^{-32} + q^{-34} }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{13}-q^9-q^5+2 q^3+q+2 q^{-1} +2 q^{-3} + q^{-5} + q^{-7} + q^{-11} - q^{-13} - q^{-17} - q^{-21} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{28}+q^{22}+q^{20}-2 q^{18}-4 q^{16}-2 q^{14}-q^{12}-4 q^{10}-4 q^8+3 q^6+2 q^4+q^2+4+7 q^{-2} +4 q^{-4} +3 q^{-6} +5 q^{-8} +4 q^{-10} +2 q^{-14} +4 q^{-16} -2 q^{-18} -3 q^{-20} + q^{-22} -2 q^{-24} -6 q^{-26} -4 q^{-28} - q^{-32} -2 q^{-34} + q^{-36} +2 q^{-38} + q^{-44} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^{16}-q^{12}-q^{10}-q^6+2 q^4+q^2+2+2 q^{-2} +2 q^{-4} + q^{-6} + q^{-8} + q^{-10} + q^{-14} - q^{-16} - q^{-20} - q^{-22} - q^{-26} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{22}+q^{20}-2 q^{18}+2 q^{16}-3 q^{14}+3 q^{12}-4 q^{10}+3 q^8-q^6+q^4+3 q^2-2+6 q^{-2} -5 q^{-4} +7 q^{-6} -6 q^{-8} +5 q^{-10} -4 q^{-12} +3 q^{-14} - q^{-16} - q^{-18} +3 q^{-20} -3 q^{-22} +3 q^{-24} -3 q^{-26} +3 q^{-28} -3 q^{-30} + q^{-32} - q^{-34} }[/math] |
| 1,0 | [math]\displaystyle{ q^{36}-q^{32}-q^{30}+q^{28}+2 q^{26}-3 q^{22}-3 q^{20}+3 q^{16}-4 q^{12}-2 q^{10}+2 q^8+4 q^6-q^4-q^2+2+5 q^{-2} + q^{-4} - q^{-6} +3 q^{-10} +2 q^{-12} - q^{-14} - q^{-16} +2 q^{-18} +2 q^{-20} - q^{-22} -3 q^{-24} +3 q^{-28} + q^{-30} -4 q^{-32} -4 q^{-34} + q^{-36} +3 q^{-38} -3 q^{-42} -2 q^{-44} +2 q^{-46} +2 q^{-48} - q^{-50} - q^{-52} + q^{-56} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{30}-q^{28}+q^{26}-q^{24}+2 q^{22}-3 q^{20}-4 q^{16}+2 q^{14}-4 q^{12}-2 q^8+2 q^6+3 q^4+q^2+5- q^{-2} +7 q^{-4} -2 q^{-6} +6 q^{-8} -4 q^{-10} +6 q^{-12} -2 q^{-14} +5 q^{-16} -2 q^{-18} +2 q^{-20} - q^{-22} - q^{-24} - q^{-26} -4 q^{-28} + q^{-30} -4 q^{-32} + q^{-34} -3 q^{-36} +3 q^{-38} -2 q^{-40} +2 q^{-42} - q^{-44} + q^{-46} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{52}-q^{50}+2 q^{48}-2 q^{46}-3 q^{40}+4 q^{38}-5 q^{36}+4 q^{34}-5 q^{32}+q^{30}+3 q^{28}-6 q^{26}+8 q^{24}-9 q^{22}+7 q^{20}-4 q^{18}-3 q^{16}+7 q^{14}-8 q^{12}+9 q^{10}-q^8-3 q^6+6 q^4-3 q^2+1+6 q^{-2} -10 q^{-4} +12 q^{-6} -5 q^{-8} +10 q^{-12} -14 q^{-14} +17 q^{-16} -11 q^{-18} +3 q^{-20} +4 q^{-22} -9 q^{-24} +14 q^{-26} -10 q^{-28} +6 q^{-30} + q^{-32} -5 q^{-34} +7 q^{-36} -5 q^{-38} +4 q^{-42} -8 q^{-44} +7 q^{-46} -3 q^{-48} -4 q^{-50} +10 q^{-52} -13 q^{-54} +10 q^{-56} -5 q^{-58} -4 q^{-60} +7 q^{-62} -10 q^{-64} +9 q^{-66} -5 q^{-68} +2 q^{-72} -4 q^{-74} +3 q^{-76} - q^{-78} + q^{-80} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 8"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 2 t^2-6 t+9-6 t^{-1} +2 t^{-2} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 2 z^4+2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 25, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^5+2 q^4-3 q^3+4 q^2-4 q+5-3 q^{-1} +2 q^{-2} - q^{-3} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^4 a^{-2} +z^4-a^2 z^2+2 z^2 a^{-2} -z^2 a^{-4} +2 z^2-a^2+ a^{-2} - a^{-4} +2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^7 a^{-1} +z^7 a^{-3} +4 z^6 a^{-2} +2 z^6 a^{-4} +2 z^6+2 a z^5+z^5 a^{-1} +z^5 a^{-5} +2 a^2 z^4-9 z^4 a^{-2} -6 z^4 a^{-4} -z^4+a^3 z^3-3 z^3 a^{-1} -5 z^3 a^{-3} -3 z^3 a^{-5} -2 a^2 z^2+5 z^2 a^{-2} +4 z^2 a^{-4} -z^2-a^3 z-a z+z a^{-1} +3 z a^{-3} +2 z a^{-5} +a^2- a^{-2} - a^{-4} +2 }[/math] |
Vassiliev invariants
| V2 and V3: | (2, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 8 8. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[8, 8]] |
Out[2]= | 8 |
In[3]:= | PD[Knot[8, 8]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12], X[13, 7, 14, 6], X[9, 1, 10, 16], X[15, 11, 16, 10], X[7, 2, 8, 3]] |
In[4]:= | GaussCode[Knot[8, 8]] |
Out[4]= | GaussCode[-1, 8, -2, 1, -4, 5, -8, 2, -6, 7, -3, 4, -5, 3, -7, 6] |
In[5]:= | BR[Knot[8, 8]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, -3, 2, -3, -3}] |
In[6]:= | alex = Alexander[Knot[8, 8]][t] |
Out[6]= | 2 6 2 |
In[7]:= | Conway[Knot[8, 8]][z] |
Out[7]= | 2 4 1 + 2 z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 8], Knot[10, 129], Knot[11, NonAlternating, 39],
|
In[9]:= | {KnotDet[Knot[8, 8]], KnotSignature[Knot[8, 8]]} |
Out[9]= | {25, 0} |
In[10]:= | J=Jones[Knot[8, 8]][q] |
Out[10]= | -3 2 3 2 3 4 5 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[8, 8], Knot[10, 129]} |
In[12]:= | A2Invariant[Knot[8, 8]][q] |
Out[12]= | -10 -4 2 2 4 8 10 16 |
In[13]:= | Kauffman[Knot[8, 8]][a, z] |
Out[13]= | 2 2-4 -2 2 2 z 3 z z 3 2 4 z 5 z |
In[14]:= | {Vassiliev[2][Knot[8, 8]], Vassiliev[3][Knot[8, 8]]} |
Out[14]= | {0, 1} |
In[15]:= | Kh[Knot[8, 8]][q, t] |
Out[15]= | 3 1 1 1 2 1 3 |


