9 30: Difference between revisions
| No edit summary | No edit summary | ||
| Line 1: | Line 1: | ||
| <!--  --> | <!--  --> | ||
| <!-- --> | |||
| <!--  --> | |||
| <!-- --> | |||
| <!-- provide an anchor so we can return to the top of the page --> | <!-- provide an anchor so we can return to the top of the page --> | ||
| <span id="top"></span> | <span id="top"></span> | ||
| <!-- --> | |||
| <!-- this relies on transclusion for next and previous links --> | <!-- this relies on transclusion for next and previous links --> | ||
| {{Knot Navigation Links|ext=gif}} | {{Knot Navigation Links|ext=gif}} | ||
| ⚫ | |||
| {| align=left | |||
| |- valign=top | |||
| |[[Image:{{PAGENAME}}.gif]] | |||
| ⚫ | |||
| |{{:{{PAGENAME}} Quick Notes}} | |||
| |} | |||
| <br style="clear:both" /> | <br style="clear:both" /> | ||
| Line 24: | Line 21: | ||
| {{Vassiliev Invariants}} | {{Vassiliev Invariants}} | ||
| {{Khovanov Homology|table=<table border=1> | |||
| The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. | |||
| <center><table border=1> | |||
| <tr align=center> | <tr align=center> | ||
| <td width=14.2857%><table cellpadding=0 cellspacing=0> | <td width=14.2857%><table cellpadding=0 cellspacing=0> | ||
| Line 47: | Line 40: | ||
| <tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> | <tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> | ||
| <tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | <tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | ||
| </table> | </table>}} | ||
| {{Computer Talk Header}} | {{Computer Talk Header}} | ||
| Line 140: | Line 132: | ||
|   q  t</nowiki></pre></td></tr> |   q  t</nowiki></pre></td></tr> | ||
| </table> | </table> | ||
|  [[Category:Knot Page]] | |||
Revision as of 20:13, 28 August 2005
|  |  | 
|   | Visit 9 30's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 9 30's page at Knotilus! Visit 9 30's page at the original Knot Atlas! | 
Knot presentations
| Planar diagram presentation | X4251 X10,6,11,5 X8394 X2,9,3,10 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13 | 
| Gauss code | 1, -4, 3, -1, 2, -9, 5, -3, 4, -2, 7, -8, 9, -5, 6, -7, 8, -6 | 
| Dowker-Thistlethwaite code | 4 8 10 14 2 16 6 18 12 | 
| Conway Notation | [211,21,2] | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["9 30"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 53, 0 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
Vassiliev invariants
| V2 and V3: | (-1, -1) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 30. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| In[1]:= | << KnotTheory` | 
| Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
| In[2]:= | Crossings[Knot[9, 30]] | 
| Out[2]= | 9 | 
| In[3]:= | PD[Knot[9, 30]] | 
| Out[3]= | PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10],X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12],X[12, 17, 13, 18], X[6, 14, 7, 13]] | 
| In[4]:= | GaussCode[Knot[9, 30]] | 
| Out[4]= | GaussCode[1, -4, 3, -1, 2, -9, 5, -3, 4, -2, 7, -8, 9, -5, 6, -7, 8, -6] | 
| In[5]:= | BR[Knot[9, 30]] | 
| Out[5]= | BR[4, {-1, -1, 2, 2, -1, 2, -3, 2, -3}] | 
| In[6]:= | alex = Alexander[Knot[9, 30]][t] | 
| Out[6]= | -3 5 12 2 3 | 
| In[7]:= | Conway[Knot[9, 30]][z] | 
| Out[7]= | 2 4 6 1 - z - z - z | 
| In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[8]= | {Knot[9, 30], Knot[11, NonAlternating, 130]} | 
| In[9]:= | {KnotDet[Knot[9, 30]], KnotSignature[Knot[9, 30]]} | 
| Out[9]= | {53, 0} | 
| In[10]:= | J=Jones[Knot[9, 30]][q] | 
| Out[10]= | -5 3 5 8 9 2 3 4 | 
| In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[11]= | {Knot[9, 30], Knot[11, NonAlternating, 114]} | 
| In[12]:= | A2Invariant[Knot[9, 30]][q] | 
| Out[12]= | -16 -12 -10 3 -6 -2 2 4 6 8 | 
| In[13]:= | Kauffman[Knot[9, 30]][a, z] | 
| Out[13]= | 22 2 4 z z 3 5 2 z | 
| In[14]:= | {Vassiliev[2][Knot[9, 30]], Vassiliev[3][Knot[9, 30]]} | 
| Out[14]= | {0, -1} | 
| In[15]:= | Kh[Knot[9, 30]][q, t] | 
| Out[15]= | 5 1 2 1 3 2 5 3 | 


