9 36: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=36|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,7,-2,3,-4,2,-5,9,-8,6,-7,5,-9,8/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=36|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,7,-2,3,-4,2,-5,9,-8,6,-7,5,-9,8/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 132: Line 124:
q t + q t + q t</nowiki></pre></td></tr>
q t + q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:13, 28 August 2005

9 35.gif

9_35

9 37.gif

9_37

9 36.gif Visit 9 36's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 36's page at Knotilus!

Visit 9 36's page at the original Knot Atlas!

9 36 Quick Notes


9 36 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X7,10,8,11 X3948 X9,3,10,2 X11,17,12,16 X5,15,6,14 X15,7,16,6 X13,1,14,18 X17,13,18,12
Gauss code -1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -5, 9, -8, 6, -7, 5, -9, 8
Dowker-Thistlethwaite code 4 8 14 10 2 16 18 6 12
Conway Notation [22,3,2]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-12]
Hyperbolic Volume 9.88458
A-Polynomial See Data:9 36/A-polynomial

[edit Notes for 9 36's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 4

[edit Notes for 9 36's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 37, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (3, 7)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 9 36. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
19         1-1
17        1 1
15       31 -2
13      31  2
11     33   0
9    33    0
7   23     1
5  23      -1
3 13       2
1 1        -1
-11         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 36]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 36]]
Out[3]=  
PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], 
 X[11, 17, 12, 16], X[5, 15, 6, 14], X[15, 7, 16, 6], 

X[13, 1, 14, 18], X[17, 13, 18, 12]]
In[4]:=
GaussCode[Knot[9, 36]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -5, 9, -8, 6, -7, 5, -9, 8]
In[5]:=
BR[Knot[9, 36]]
Out[5]=  
BR[4, {1, 1, 1, -2, 1, 1, 3, -2, 3}]
In[6]:=
alex = Alexander[Knot[9, 36]][t]
Out[6]=  
     -3   5    8            2    3

9 - t + -- - - - 8 t + 5 t - t

          2   t
t
In[7]:=
Conway[Knot[9, 36]][z]
Out[7]=  
       2    4    6
1 + 3 z  - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 36]}
In[9]:=
{KnotDet[Knot[9, 36]], KnotSignature[Knot[9, 36]]}
Out[9]=  
{37, 4}
In[10]:=
J=Jones[Knot[9, 36]][q]
Out[10]=  
             2      3      4      5      6      7      8    9
1 - 2 q + 4 q  - 5 q  + 6 q  - 6 q  + 6 q  - 4 q  + 2 q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 36], Knot[11, NonAlternating, 16]}
In[12]:=
A2Invariant[Knot[9, 36]][q]
Out[12]=  
     4    6    8    10      12    14    16    18      20    22    26

1 + q + q - q + q - 2 q + q + q + q + 2 q - q - q -

  28
q
In[13]:=
Kauffman[Knot[9, 36]][a, z]
Out[13]=  
                                                2       2       2

-2 4 3 2 z z z 2 z z z 7 z 15 z -- - -- - -- - -- - --- + -- + -- - --- - -- - --- + ---- + ----- +

8    6    4    2    11    9    7    5     3    10     8      6

a a a a a a a a a a a a

     2      2    3       3      3      3      4      4       4
 12 z    5 z    z     2 z    9 z    6 z    2 z    7 z    17 z
 ----- + ---- + --- - ---- + ---- + ---- + ---- - ---- - ----- - 
   4       2     11     9      5      3     10      8      6
  a       a     a      a      a      a     a       a      a

     4      4      5      5       5      5      6      6    6    6
 12 z    4 z    3 z    4 z    14 z    7 z    4 z    4 z    z    z
 ----- - ---- + ---- - ---- - ----- - ---- + ---- + ---- + -- + -- + 
   4       2      9      7      5       3      8      6     4    2
  a       a      a      a      a       a      a      a     a    a

    7      7      7    8    8
 3 z    5 z    2 z    z    z
 ---- + ---- + ---- + -- + --
   7      5      3     6    4
a a a a a
In[14]:=
{Vassiliev[2][Knot[9, 36]], Vassiliev[3][Knot[9, 36]]}
Out[14]=  
{0, 7}
In[15]:=
Kh[Knot[9, 36]][q, t]
Out[15]=  
                          3
  3      5    1     q   q       5        7        7  2      9  2

3 q + 2 q + ---- + - + -- + 3 q t + 2 q t + 3 q t + 3 q t +

                2   t   t
             q t

    9  3      11  3      11  4      13  4    13  5      15  5
 3 q  t  + 3 q   t  + 3 q   t  + 3 q   t  + q   t  + 3 q   t  + 

  15  6    17  6    19  7
q t + q t + q t