10 81: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
Line 48: | Line 41: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 150: | Line 142: | ||
q t + 2 q t + q t</nowiki></pre></td></tr> |
q t + 2 q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
Revision as of 19:11, 28 August 2005
|
|
Visit 10 81's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 81's page at Knotilus! Visit 10 81's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X4251 X8493 X12,6,13,5 X16,9,17,10 X20,17,1,18 X18,13,19,14 X14,19,15,20 X10,15,11,16 X6,12,7,11 X2837 |
Gauss code | 1, -10, 2, -1, 3, -9, 10, -2, 4, -8, 9, -3, 6, -7, 8, -4, 5, -6, 7, -5 |
Dowker-Thistlethwaite code | 4 8 12 2 16 6 18 10 20 14 |
Conway Notation | [(21,2)(21,2)] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 85, 0 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^9+z^9 a^{-1} +4 a^2 z^8+4 z^8 a^{-2} +8 z^8+5 a^3 z^7+13 a z^7+13 z^7 a^{-1} +5 z^7 a^{-3} +3 a^4 z^6+3 z^6 a^{-4} -6 z^6+a^5 z^5-8 a^3 z^5-31 a z^5-31 z^5 a^{-1} -8 z^5 a^{-3} +z^5 a^{-5} -5 a^4 z^4-9 a^2 z^4-9 z^4 a^{-2} -5 z^4 a^{-4} -8 z^4-2 a^5 z^3+5 a^3 z^3+25 a z^3+25 z^3 a^{-1} +5 z^3 a^{-3} -2 z^3 a^{-5} +3 a^4 z^2+6 a^2 z^2+6 z^2 a^{-2} +3 z^2 a^{-4} +6 z^2+a^5 z-2 a^3 z-8 a z-8 z a^{-1} -2 z a^{-3} +z a^{-5} -a^4-a^2- a^{-2} - a^{-4} +1} |
The A2 invariant | |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{63}+2 q^{61}-4 q^{57}-2 q^{55}+12 q^{53}+9 q^{51}-26 q^{49}-25 q^{47}+41 q^{45}+58 q^{43}-47 q^{41}-113 q^{39}+41 q^{37}+173 q^{35}-3 q^{33}-226 q^{31}-68 q^{29}+260 q^{27}+140 q^{25}-250 q^{23}-215 q^{21}+207 q^{19}+260 q^{17}-137 q^{15}-277 q^{13}+64 q^{11}+255 q^9+21 q^7-215 q^5-91 q^3+159 q+159 q^{-1} -91 q^{-3} -215 q^{-5} +21 q^{-7} +255 q^{-9} +64 q^{-11} -277 q^{-13} -137 q^{-15} +260 q^{-17} +207 q^{-19} -215 q^{-21} -250 q^{-23} +140 q^{-25} +260 q^{-27} -68 q^{-29} -226 q^{-31} -3 q^{-33} +173 q^{-35} +41 q^{-37} -113 q^{-39} -47 q^{-41} +58 q^{-43} +41 q^{-45} -25 q^{-47} -26 q^{-49} +9 q^{-51} +12 q^{-53} -2 q^{-55} -4 q^{-57} +2 q^{-61} - q^{-63} } |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}-2 q^{38}+5 q^{34}+3 q^{32}-8 q^{30}-5 q^{28}+11 q^{26}+q^{24}-17 q^{22}-6 q^{20}+17 q^{18}+5 q^{16}-20 q^{14}+3 q^{12}+18 q^{10}-5 q^8-10 q^6+9 q^4+6 q^2-6+6 q^{-2} +9 q^{-4} -10 q^{-6} -5 q^{-8} +18 q^{-10} +3 q^{-12} -20 q^{-14} +5 q^{-16} +17 q^{-18} -6 q^{-20} -17 q^{-22} + q^{-24} +11 q^{-26} -5 q^{-28} -8 q^{-30} +3 q^{-32} +5 q^{-34} -2 q^{-38} + q^{-42} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 81"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 85, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^9+z^9 a^{-1} +4 a^2 z^8+4 z^8 a^{-2} +8 z^8+5 a^3 z^7+13 a z^7+13 z^7 a^{-1} +5 z^7 a^{-3} +3 a^4 z^6+3 z^6 a^{-4} -6 z^6+a^5 z^5-8 a^3 z^5-31 a z^5-31 z^5 a^{-1} -8 z^5 a^{-3} +z^5 a^{-5} -5 a^4 z^4-9 a^2 z^4-9 z^4 a^{-2} -5 z^4 a^{-4} -8 z^4-2 a^5 z^3+5 a^3 z^3+25 a z^3+25 z^3 a^{-1} +5 z^3 a^{-3} -2 z^3 a^{-5} +3 a^4 z^2+6 a^2 z^2+6 z^2 a^{-2} +3 z^2 a^{-4} +6 z^2+a^5 z-2 a^3 z-8 a z-8 z a^{-1} -2 z a^{-3} +z a^{-5} -a^4-a^2- a^{-2} - a^{-4} +1} |
Vassiliev invariants
V2 and V3: | (3, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 81. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 81]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 81]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[16, 9, 17, 10],X[20, 17, 1, 18], X[18, 13, 19, 14], X[14, 19, 15, 20],X[10, 15, 11, 16], X[6, 12, 7, 11], X[2, 8, 3, 7]] |
In[4]:= | GaussCode[Knot[10, 81]] |
Out[4]= | GaussCode[1, -10, 2, -1, 3, -9, 10, -2, 4, -8, 9, -3, 6, -7, 8, -4, 5, -6, 7, -5] |
In[5]:= | BR[Knot[10, 81]] |
Out[5]= | BR[5, {1, 1, -2, 1, 3, 2, 2, -4, -3, -3, -3, -4}] |
In[6]:= | alex = Alexander[Knot[10, 81]][t] |
Out[6]= | -3 8 20 2 3 |
In[7]:= | Conway[Knot[10, 81]][z] |
Out[7]= | 2 4 6 1 + 3 z + 2 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 81]} |
In[9]:= | {KnotDet[Knot[10, 81]], KnotSignature[Knot[10, 81]]} |
Out[9]= | {85, 0} |
In[10]:= | J=Jones[Knot[10, 81]][q] |
Out[10]= | -5 3 7 11 13 2 3 4 5 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 81], Knot[10, 109]} |
In[12]:= | A2Invariant[Knot[10, 81]][q] |
Out[12]= | -16 -12 3 2 -4 4 2 4 8 10 |
In[13]:= | Kauffman[Knot[10, 81]][a, z] |
Out[13]= | -4 -2 2 4 z 2 z 8 z 3 5 |
In[14]:= | {Vassiliev[2][Knot[10, 81]], Vassiliev[3][Knot[10, 81]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[10, 81]][q, t] |
Out[15]= | 8 1 2 1 5 2 6 5 |