10 141: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
| ⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
| ⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
| Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
| Line 46: | Line 39: | ||
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
| Line 123: | Line 115: | ||
q t q t q t</nowiki></pre></td></tr> |
q t q t q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
|||
Revision as of 19:16, 28 August 2005
|
|
|
|
Visit 10 141's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 141's page at Knotilus! Visit 10 141's page at the original Knot Atlas! |
10 141 Further Notes and Views
Knot presentations
| Planar diagram presentation | X1425 X3,10,4,11 X14,6,15,5 X16,8,17,7 X6,16,7,15 X17,20,18,1 X11,18,12,19 X19,12,20,13 X8,14,9,13 X9,2,10,3 |
| Gauss code | -1, 10, -2, 1, 3, -5, 4, -9, -10, 2, -7, 8, 9, -3, 5, -4, -6, 7, -8, 6 |
| Dowker-Thistlethwaite code | 4 10 -14 -16 2 18 -8 -6 20 12 |
| Conway Notation | [4,21,21-] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^3+3 t^2-4 t+5-4 t^{-1} +3 t^{-2} - t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^6-3 z^4-z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 21, 0 } |
| Jones polynomial | [math]\displaystyle{ q^2-2 q+3-3 q^{-1} +4 q^{-2} -3 q^{-3} +2 q^{-4} -2 q^{-5} + q^{-6} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^2 z^6+a^4 z^4-5 a^2 z^4+z^4+3 a^4 z^2-7 a^2 z^2+3 z^2+a^4-2 a^2+2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^4 z^8+a^2 z^8+2 a^5 z^7+3 a^3 z^7+a z^7+a^6 z^6-3 a^4 z^6-4 a^2 z^6-9 a^5 z^5-12 a^3 z^5-3 a z^5-4 a^6 z^4+a^4 z^4+8 a^2 z^4+3 z^4+10 a^5 z^3+13 a^3 z^3+5 a z^3+2 z^3 a^{-1} +3 a^6 z^2-a^4 z^2-9 a^2 z^2+z^2 a^{-2} -4 z^2-2 a^5 z-4 a^3 z-3 a z-z a^{-1} +a^4+2 a^2+2 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{18}-q^{12}-q^{10}+q^8+q^4+ q^{-2} + q^{-6} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{94}-q^{92}+2 q^{90}-3 q^{88}+q^{86}-q^{84}-2 q^{82}+6 q^{80}-7 q^{78}+6 q^{76}-2 q^{74}-3 q^{72}+6 q^{70}-5 q^{68}+4 q^{66}-3 q^{62}+7 q^{60}-q^{58}-2 q^{56}+4 q^{54}-8 q^{52}+7 q^{50}-7 q^{46}+3 q^{44}-4 q^{42}+9 q^{40}-4 q^{38}-2 q^{36}-q^{34}-3 q^{32}+7 q^{30}-6 q^{28}-q^{26}+q^{22}+5 q^{20}-3 q^{18}-3 q^{16}+5 q^{14}-5 q^{12}+4 q^{10}-6 q^6+8 q^4-3 q^2+2+2 q^{-2} -3 q^{-4} +2 q^{-6} - q^{-8} + q^{-10} +2 q^{-12} +2 q^{-18} +2 q^{-24} -2 q^{-26} + q^{-28} - q^{-30} - q^{-32} + q^{-34} - q^{-36} + q^{-38} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ q^{13}-q^{11}-q^7+q^5+q^3+ q^{-1} - q^{-3} + q^{-5} }[/math] |
| 2 | [math]\displaystyle{ q^{38}-q^{36}-2 q^{34}+2 q^{32}+q^{30}-2 q^{28}+q^{26}+3 q^{24}-q^{22}-2 q^{20}-q^{16}-2 q^{14}+q^{12}+2 q^{10}-q^8+q^6+3 q^4+q^2-2+ q^{-2} + q^{-4} -2 q^{-6} + q^{-14} }[/math] |
| 3 | [math]\displaystyle{ q^{75}-q^{73}-2 q^{71}+3 q^{67}+3 q^{65}-3 q^{63}-4 q^{61}+q^{59}+5 q^{57}+2 q^{55}-5 q^{53}-6 q^{51}+q^{49}+5 q^{47}+3 q^{45}-3 q^{43}-4 q^{41}+3 q^{39}+7 q^{37}+2 q^{35}-7 q^{33}-4 q^{31}+4 q^{29}+3 q^{27}-6 q^{25}-3 q^{23}+4 q^{21}+2 q^{19}-4 q^{17}-2 q^{15}+4 q^{13}+4 q^{11}-3 q^7-2 q^5+4 q^3+7 q-2 q^{-1} -8 q^{-3} -2 q^{-5} +8 q^{-7} +5 q^{-9} -5 q^{-11} -5 q^{-13} + q^{-15} +5 q^{-17} + q^{-19} -3 q^{-21} -2 q^{-23} +2 q^{-27} }[/math] |
| 5 | [math]\displaystyle{ q^{185}-q^{183}-2 q^{181}+q^{177}+3 q^{175}+3 q^{173}+q^{171}-5 q^{169}-7 q^{167}-4 q^{165}+q^{163}+8 q^{161}+12 q^{159}+7 q^{157}-8 q^{155}-15 q^{153}-14 q^{151}-5 q^{149}+12 q^{147}+23 q^{145}+19 q^{143}+q^{141}-16 q^{139}-27 q^{137}-23 q^{135}-q^{133}+20 q^{131}+30 q^{129}+22 q^{127}+3 q^{125}-22 q^{123}-37 q^{121}-30 q^{119}-3 q^{117}+31 q^{115}+50 q^{113}+40 q^{111}-2 q^{109}-47 q^{107}-65 q^{105}-36 q^{103}+26 q^{101}+71 q^{99}+68 q^{97}+12 q^{95}-64 q^{93}-91 q^{91}-48 q^{89}+33 q^{87}+88 q^{85}+76 q^{83}-77 q^{79}-87 q^{77}-23 q^{75}+57 q^{73}+87 q^{71}+46 q^{69}-34 q^{67}-79 q^{65}-50 q^{63}+19 q^{61}+64 q^{59}+51 q^{57}-7 q^{55}-52 q^{53}-43 q^{51}+4 q^{49}+35 q^{47}+29 q^{45}-7 q^{43}-30 q^{41}-18 q^{39}+11 q^{37}+24 q^{35}+11 q^{33}-15 q^{31}-24 q^{29}-16 q^{27}+9 q^{25}+31 q^{23}+30 q^{21}+9 q^{19}-25 q^{17}-45 q^{15}-36 q^{13}+9 q^{11}+59 q^9+71 q^7+22 q^5-55 q^3-96 q-63 q^{-1} +29 q^{-3} +110 q^{-5} +101 q^{-7} +6 q^{-9} -97 q^{-11} -115 q^{-13} -43 q^{-15} +62 q^{-17} +111 q^{-19} +63 q^{-21} -28 q^{-23} -82 q^{-25} -61 q^{-27} -2 q^{-29} +45 q^{-31} +48 q^{-33} +13 q^{-35} -19 q^{-37} -25 q^{-39} -11 q^{-41} +4 q^{-43} +9 q^{-45} +7 q^{-47} -2 q^{-49} -3 q^{-51} + q^{-53} +3 q^{-55} + q^{-57} - q^{-59} -3 q^{-61} -3 q^{-63} + q^{-65} + q^{-67} + q^{-69} }[/math] |
| 6 | [math]\displaystyle{ q^{258}-q^{256}-2 q^{254}+q^{250}+3 q^{248}+q^{246}+3 q^{244}-q^{242}-7 q^{240}-6 q^{238}-4 q^{236}+2 q^{234}+5 q^{232}+15 q^{230}+11 q^{228}+q^{226}-10 q^{224}-19 q^{222}-18 q^{220}-15 q^{218}+12 q^{216}+27 q^{214}+31 q^{212}+22 q^{210}-24 q^{206}-48 q^{204}-39 q^{202}-17 q^{200}+17 q^{198}+43 q^{196}+56 q^{194}+45 q^{192}+4 q^{190}-32 q^{188}-61 q^{186}-61 q^{184}-41 q^{182}+q^{180}+51 q^{178}+80 q^{176}+79 q^{174}+43 q^{172}-14 q^{170}-82 q^{168}-121 q^{166}-102 q^{164}-32 q^{162}+62 q^{160}+142 q^{158}+165 q^{156}+94 q^{154}-39 q^{152}-158 q^{150}-211 q^{148}-158 q^{146}-6 q^{144}+169 q^{142}+259 q^{140}+209 q^{138}+49 q^{136}-157 q^{134}-289 q^{132}-257 q^{130}-74 q^{128}+154 q^{126}+300 q^{124}+289 q^{122}+95 q^{120}-158 q^{118}-319 q^{116}-293 q^{114}-97 q^{112}+154 q^{110}+327 q^{108}+286 q^{106}+68 q^{104}-183 q^{102}-312 q^{100}-249 q^{98}-34 q^{96}+211 q^{94}+301 q^{92}+189 q^{90}-35 q^{88}-217 q^{86}-249 q^{84}-119 q^{82}+97 q^{80}+220 q^{78}+179 q^{76}+28 q^{74}-122 q^{72}-174 q^{70}-104 q^{68}+37 q^{66}+126 q^{64}+106 q^{62}+19 q^{60}-64 q^{58}-87 q^{56}-42 q^{54}+28 q^{52}+59 q^{50}+33 q^{48}-19 q^{46}-53 q^{44}-41 q^{42}+6 q^{40}+53 q^{38}+67 q^{36}+37 q^{34}-23 q^{32}-76 q^{30}-91 q^{28}-52 q^{26}+22 q^{24}+106 q^{22}+147 q^{20}+102 q^{18}-17 q^{16}-150 q^{14}-215 q^{12}-166 q^{10}+10 q^8+212 q^6+306 q^4+218 q^2-19-267 q^{-2} -389 q^{-4} -259 q^{-6} +44 q^{-8} +329 q^{-10} +419 q^{-12} +255 q^{-14} -60 q^{-16} -354 q^{-18} -407 q^{-20} -213 q^{-22} +91 q^{-24} +309 q^{-26} +335 q^{-28} +170 q^{-30} -90 q^{-32} -241 q^{-34} -237 q^{-36} -104 q^{-38} +50 q^{-40} +152 q^{-42} +156 q^{-44} +63 q^{-46} -23 q^{-48} -77 q^{-50} -78 q^{-52} -50 q^{-54} +35 q^{-58} +33 q^{-60} +28 q^{-62} +9 q^{-64} -4 q^{-66} -18 q^{-68} -15 q^{-70} -7 q^{-72} -3 q^{-74} +7 q^{-76} +8 q^{-78} +9 q^{-80} + q^{-82} -2 q^{-84} -4 q^{-86} -5 q^{-88} - q^{-90} +2 q^{-94} + q^{-96} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{18}-q^{12}-q^{10}+q^8+q^4+ q^{-2} + q^{-6} }[/math] |
| 1,1 | [math]\displaystyle{ q^{52}-2 q^{50}+4 q^{48}-8 q^{46}+11 q^{44}-16 q^{42}+18 q^{40}-14 q^{38}+12 q^{36}-4 q^{34}-4 q^{32}+14 q^{30}-23 q^{28}+22 q^{26}-26 q^{24}+24 q^{22}-21 q^{20}+18 q^{18}-8 q^{16}+4 q^{14}+3 q^{12}-10 q^{10}+12 q^8-14 q^6+14 q^4-4 q^2+4+2 q^{-2} - q^{-4} -2 q^{-8} -4 q^{-10} +5 q^{-12} -2 q^{-14} +4 q^{-16} -2 q^{-18} + q^{-20} }[/math] |
| 2,0 | [math]\displaystyle{ q^{48}-q^{44}-q^{42}-q^{36}+q^{34}+3 q^{32}+4 q^{30}-q^{26}-3 q^{24}-4 q^{22}-3 q^{20}-3 q^{18}+q^{16}+q^{14}+4 q^{12}+4 q^{10}+3 q^8+2 q^6+2 q^4-3-2 q^{-2} - q^{-4} - q^{-8} +2 q^{-12} + q^{-14} + q^{-16} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{40}-q^{38}-2 q^{32}+q^{30}+q^{26}+2 q^{24}+q^{22}+q^{18}-2 q^{14}-2 q^{10}-q^8-2 q^6+2 q^2+1+3 q^{-2} +3 q^{-4} + q^{-10} - q^{-12} - q^{-14} + q^{-16} }[/math] |
| 1,0,0 | [math]\displaystyle{ q^{23}+q^{19}-q^{17}-q^{13}+q+2 q^{-3} + q^{-7} }[/math] |
| 1,0,1 | [math]\displaystyle{ q^{66}-2 q^{64}+3 q^{62}-3 q^{60}+q^{58}+q^{56}-6 q^{54}+8 q^{52}-7 q^{50}+9 q^{48}-4 q^{46}+4 q^{44}-5 q^{40}+8 q^{38}-15 q^{36}+12 q^{34}-18 q^{32}+13 q^{30}-8 q^{28}+3 q^{26}+11 q^{24}-9 q^{22}+17 q^{20}-13 q^{18}+16 q^{16}-17 q^{14}+8 q^{12}-7 q^{10}-7 q^8+8 q^6-8 q^4+15 q^2-5+12 q^{-2} -2 q^{-4} + q^{-6} -2 q^{-8} -3 q^{-10} -3 q^{-14} +7 q^{-16} -2 q^{-18} +3 q^{-20} + q^{-22} -2 q^{-24} + q^{-26} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{50}-q^{42}-q^{40}-q^{38}-2 q^{36}-q^{34}+2 q^{32}+2 q^{30}+2 q^{28}+4 q^{26}+6 q^{24}+3 q^{22}-q^{20}-3 q^{16}-8 q^{14}-6 q^{12}-4 q^{10}-4 q^8+5 q^4+5 q^2+4+5 q^{-2} +4 q^{-4} -2 q^{-8} + q^{-10} - q^{-14} + q^{-18} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ q^{28}+q^{24}-q^{16}-q^{12}-q^8+q^2+1+ q^{-2} +2 q^{-4} + q^{-8} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ q^{40}-q^{38}+2 q^{36}-2 q^{34}+2 q^{32}-3 q^{30}+2 q^{28}-q^{26}+q^{22}-2 q^{20}+3 q^{18}-4 q^{16}+4 q^{14}-4 q^{12}+4 q^{10}-3 q^8+2 q^6+1- q^{-2} +3 q^{-4} -2 q^{-6} +2 q^{-8} - q^{-10} + q^{-12} - q^{-14} + q^{-16} }[/math] |
| 1,0 | [math]\displaystyle{ q^{66}-q^{62}-q^{60}+q^{58}+q^{56}-2 q^{54}-2 q^{52}+q^{50}+3 q^{48}-2 q^{44}+3 q^{40}+2 q^{38}-q^{36}-2 q^{34}+q^{30}-q^{26}-q^{24}+q^{22}+q^{20}-q^{18}-2 q^{16}+q^{14}+2 q^{12}-q^{10}-3 q^8+2 q^4+q^2-1+2 q^{-4} +3 q^{-6} - q^{-10} + q^{-14} + q^{-16} - q^{-20} - q^{-22} + q^{-26} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{54}-q^{52}+q^{50}-2 q^{48}+2 q^{46}-3 q^{44}+q^{42}-2 q^{40}+2 q^{38}+q^{34}+2 q^{32}+q^{30}+4 q^{28}-q^{26}+3 q^{24}-3 q^{22}+2 q^{20}-5 q^{18}+q^{16}-6 q^{14}-4 q^{10}+q^4+3 q^2+2+4 q^{-2} + q^{-4} +4 q^{-6} - q^{-8} + q^{-10} - q^{-12} + q^{-14} - q^{-16} - q^{-20} + q^{-22} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{94}-q^{92}+2 q^{90}-3 q^{88}+q^{86}-q^{84}-2 q^{82}+6 q^{80}-7 q^{78}+6 q^{76}-2 q^{74}-3 q^{72}+6 q^{70}-5 q^{68}+4 q^{66}-3 q^{62}+7 q^{60}-q^{58}-2 q^{56}+4 q^{54}-8 q^{52}+7 q^{50}-7 q^{46}+3 q^{44}-4 q^{42}+9 q^{40}-4 q^{38}-2 q^{36}-q^{34}-3 q^{32}+7 q^{30}-6 q^{28}-q^{26}+q^{22}+5 q^{20}-3 q^{18}-3 q^{16}+5 q^{14}-5 q^{12}+4 q^{10}-6 q^6+8 q^4-3 q^2+2+2 q^{-2} -3 q^{-4} +2 q^{-6} - q^{-8} + q^{-10} +2 q^{-12} +2 q^{-18} +2 q^{-24} -2 q^{-26} + q^{-28} - q^{-30} - q^{-32} + q^{-34} - q^{-36} + q^{-38} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 141"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^3+3 t^2-4 t+5-4 t^{-1} +3 t^{-2} - t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^6-3 z^4-z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 21, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^2-2 q+3-3 q^{-1} +4 q^{-2} -3 q^{-3} +2 q^{-4} -2 q^{-5} + q^{-6} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^2 z^6+a^4 z^4-5 a^2 z^4+z^4+3 a^4 z^2-7 a^2 z^2+3 z^2+a^4-2 a^2+2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^4 z^8+a^2 z^8+2 a^5 z^7+3 a^3 z^7+a z^7+a^6 z^6-3 a^4 z^6-4 a^2 z^6-9 a^5 z^5-12 a^3 z^5-3 a z^5-4 a^6 z^4+a^4 z^4+8 a^2 z^4+3 z^4+10 a^5 z^3+13 a^3 z^3+5 a z^3+2 z^3 a^{-1} +3 a^6 z^2-a^4 z^2-9 a^2 z^2+z^2 a^{-2} -4 z^2-2 a^5 z-4 a^3 z-3 a z-z a^{-1} +a^4+2 a^2+2 }[/math] |
Vassiliev invariants
| V2 and V3: | (-1, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 10 141. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 141]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 141]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[14, 6, 15, 5], X[16, 8, 17, 7],X[6, 16, 7, 15], X[17, 20, 18, 1], X[11, 18, 12, 19],X[19, 12, 20, 13], X[8, 14, 9, 13], X[9, 2, 10, 3]] |
In[4]:= | GaussCode[Knot[10, 141]] |
Out[4]= | GaussCode[-1, 10, -2, 1, 3, -5, 4, -9, -10, 2, -7, 8, 9, -3, 5, -4, -6, 7, -8, 6] |
In[5]:= | BR[Knot[10, 141]] |
Out[5]= | BR[3, {1, 1, 1, 1, -2, -1, -1, -1, -2, -2}] |
In[6]:= | alex = Alexander[Knot[10, 141]][t] |
Out[6]= | -3 3 4 2 3 |
In[7]:= | Conway[Knot[10, 141]][z] |
Out[7]= | 2 4 6 1 - z - 3 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 5], Knot[10, 141]} |
In[9]:= | {KnotDet[Knot[10, 141]], KnotSignature[Knot[10, 141]]} |
Out[9]= | {21, 0} |
In[10]:= | J=Jones[Knot[10, 141]][q] |
Out[10]= | -6 2 2 3 4 3 2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 141]} |
In[12]:= | A2Invariant[Knot[10, 141]][q] |
Out[12]= | -18 -12 -10 -8 -4 2 6 q - q - q + q + q + q + q |
In[13]:= | Kauffman[Knot[10, 141]][a, z] |
Out[13]= | 22 4 z 3 5 2 z 2 2 |
In[14]:= | {Vassiliev[2][Knot[10, 141]], Vassiliev[3][Knot[10, 141]]} |
Out[14]= | {0, 1} |
In[15]:= | Kh[Knot[10, 141]][q, t] |
Out[15]= | 2 1 1 1 1 1 2 1 |


