10 140
From Knot Atlas
Jump to navigationJump to search
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 140's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
10_140 is also known as the pretzel knot P(4,3,-3). |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X11,19,12,18 X14,5,15,6 X6,17,7,18 X16,7,17,8 X8,15,9,16 X13,1,14,20 X19,13,20,12 X9,2,10,3 |
Gauss code | -1, 10, -2, 1, 4, -5, 6, -7, -10, 2, -3, 9, -8, -4, 7, -6, 5, 3, -9, 8 |
Dowker-Thistlethwaite code | 4 10 -14 -16 2 18 20 -8 -6 12 |
Conway Notation | [4,3,21-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
![]() |
![]() [{9, 2}, {1, 7}, {6, 8}, {7, 9}, {10, 13}, {8, 12}, {13, 11}, {12, 5}, {4, 6}, {5, 3}, {2, 4}, {3, 10}, {11, 1}] |
[edit Notes on presentations of 10 140]
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_20, K11n73, K11n74,}
Same Jones Polynomial (up to mirroring, ): {}
Vassiliev invariants
V2 and V3: | (2, -4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 140. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|