K11n73
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8493 X5,14,6,15 X2837 X20,10,21,9 X11,16,12,17 X13,6,14,7 X15,18,16,19 X17,12,18,13 X22,20,1,19 X10,22,11,21 |
| Gauss code | 1, -4, 2, -1, -3, 7, 4, -2, 5, -11, -6, 9, -7, 3, -8, 6, -9, 8, 10, -5, 11, -10 |
| Dowker-Thistlethwaite code | 4 8 -14 2 20 -16 -6 -18 -12 22 10 |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | |
| Conway polynomial | |
| 2nd Alexander ideal (db, data sources) | |
| Determinant and Signature | { 9, 0 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^8+z^8 a^{-2} +z^8 a^{-4} +z^8+a^3 z^7+2 a z^7+2 z^7 a^{-1} +3 z^7 a^{-3} +2 z^7 a^{-5} -6 a^2 z^6-6 z^6 a^{-2} -3 z^6 a^{-4} +z^6 a^{-6} -8 z^6-6 a^3 z^5-14 a z^5-15 z^5 a^{-1} -16 z^5 a^{-3} -9 z^5 a^{-5} +10 a^2 z^4+11 z^4 a^{-2} -z^4 a^{-4} -4 z^4 a^{-6} +18 z^4+10 a^3 z^3+25 a z^3+29 z^3 a^{-1} +24 z^3 a^{-3} +10 z^3 a^{-5} -8 a^2 z^2-13 z^2 a^{-2} +z^2 a^{-4} +3 z^2 a^{-6} -19 z^2-5 a^3 z-13 a z-17 z a^{-1} -13 z a^{-3} -4 z a^{-5} +4 a^2+8 a^{-2} +2 a^{-4} +11} |
| The A2 invariant | Data:K11n73/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11n73/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11n73"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 9, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^8+z^8 a^{-2} +z^8 a^{-4} +z^8+a^3 z^7+2 a z^7+2 z^7 a^{-1} +3 z^7 a^{-3} +2 z^7 a^{-5} -6 a^2 z^6-6 z^6 a^{-2} -3 z^6 a^{-4} +z^6 a^{-6} -8 z^6-6 a^3 z^5-14 a z^5-15 z^5 a^{-1} -16 z^5 a^{-3} -9 z^5 a^{-5} +10 a^2 z^4+11 z^4 a^{-2} -z^4 a^{-4} -4 z^4 a^{-6} +18 z^4+10 a^3 z^3+25 a z^3+29 z^3 a^{-1} +24 z^3 a^{-3} +10 z^3 a^{-5} -8 a^2 z^2-13 z^2 a^{-2} +z^2 a^{-4} +3 z^2 a^{-6} -19 z^2-5 a^3 z-13 a z-17 z a^{-1} -13 z a^{-3} -4 z a^{-5} +4 a^2+8 a^{-2} +2 a^{-4} +11} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_20, 10_140, K11n74,}
Same Jones Polynomial (up to mirroring, ): {K11n74,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11n73"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{8_20, 10_140, K11n74,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n74,} |
Vassiliev invariants
| V2 and V3: | (2, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11n73. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



