8 20
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 20's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
8_20 is also known as the pretzel knot P(3,-3,2). Its complement contains no complete totally geodesic immersed surfaces.[citation needed] This appears to be the Ashley/oysterman stopper knot of practical knot tying. |
![]() The Oysterman's stopper[1] |
Knot presentations
Planar diagram presentation | X4251 X8493 X5,12,6,13 X13,16,14,1 X9,14,10,15 X15,10,16,11 X11,6,12,7 X2837 |
Gauss code | 1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4 |
Dowker-Thistlethwaite code | 4 8 -12 2 -14 -6 -16 -10 |
Conway Notation | [3,21,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
![]() |
![]() [{3, 8}, {2, 4}, {1, 3}, {11, 9}, {8, 10}, {9, 5}, {4, 6}, {5, 7}, {6, 11}, {10, 2}, {7, 1}] |
[edit Notes on presentations of 8 20]
Three dimensional invariants
|
[edit Notes for 8 20's three dimensional invariants]
|
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_140, K11n73, K11n74,}
Same Jones Polynomial (up to mirroring, ): {}
Vassiliev invariants
V2 and V3: | (2, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 20. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|