8 20
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 20's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
|
8_20 is also known as the pretzel knot P(3,-3,2). Its complement contains no complete totally geodesic immersed surfaces.[citation needed] This appears to be the Ashley/oysterman stopper knot of practical knot tying. |
The Oysterman's stopper[1] |
Knot presentations
| Planar diagram presentation | X4251 X8493 X5,12,6,13 X13,16,14,1 X9,14,10,15 X15,10,16,11 X11,6,12,7 X2837 |
| Gauss code | 1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4 |
| Dowker-Thistlethwaite code | 4 8 -12 2 -14 -6 -16 -10 |
| Conway Notation | [3,21,2-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
|
![]() [{3, 8}, {2, 4}, {1, 3}, {11, 9}, {8, 10}, {9, 5}, {4, 6}, {5, 7}, {6, 11}, {10, 2}, {7, 1}] |
[edit Notes on presentations of 8 20]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 20"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X8493 X5,12,6,13 X13,16,14,1 X9,14,10,15 X15,10,16,11 X11,6,12,7 X2837 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -12 2 -14 -6 -16 -10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3,21,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(3,\{1,1,1,-2,-1,-1,-1,-2\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 8, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 8}, {2, 4}, {1, 3}, {11, 9}, {8, 10}, {9, 5}, {4, 6}, {5, 7}, {6, 11}, {10, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
[edit Notes for 8 20's three dimensional invariants]
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2-2 t+3-2 t^{-1} + t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4+2 z^2+1} |
| 2nd Alexander ideal (db, data sources) | |
| Determinant and Signature | { 9, 0 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}+q^{40}+q^{38}-q^{32}-2 q^{30}-4 q^{28}-4 q^{26}-3 q^{24}-q^{22}+2 q^{20}+3 q^{18}+5 q^{16}+3 q^{14}+3 q^{12}+q^{10}+q^8+q^4- q^{-8} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{34}+q^{30}-q^{26}-2 q^{24}-4 q^{22}-4 q^{20}-3 q^{18}+2 q^{14}+6 q^{12}+6 q^{10}+6 q^8+3 q^6+q^4-q^2-2-2 q^{-2} - q^{-4} - q^{-6} + q^{-10} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{21}-q^{19}-2 q^{17}-q^{15}+2 q^{11}+3 q^9+3 q^7+2 q^5+q^3- q^{-1} - q^{-5} } |
| 1,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}+2 q^{52}+q^{48}-q^{44}+q^{42}-2 q^{40}+q^{38}-4 q^{36}-2 q^{34}-6 q^{32}-5 q^{30}-5 q^{28}-6 q^{26}-2 q^{22}+6 q^{20}+5 q^{18}+10 q^{16}+9 q^{14}+9 q^{12}+8 q^{10}+2 q^8+3 q^6-2 q^4-3- q^{-2} - q^{-4} -2 q^{-6} - q^{-8} - q^{-10} + q^{-16} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{44}+q^{42}+2 q^{40}+2 q^{38}+q^{36}-q^{34}-3 q^{32}-6 q^{30}-9 q^{28}-9 q^{26}-7 q^{24}-3 q^{22}+q^{20}+8 q^{18}+12 q^{16}+13 q^{14}+12 q^{12}+9 q^{10}+3 q^8-q^6-4 q^4-5 q^2-5-3 q^{-2} - q^{-4} + q^{-10} + q^{-12} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{26}-q^{24}-2 q^{22}-2 q^{20}-q^{18}+2 q^{14}+3 q^{12}+4 q^{10}+3 q^8+2 q^6+q^4-1- q^{-2} - q^{-6} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{34}-q^{30}-q^{26}+q^{18}+2 q^{14}+2 q^{10}+q^6+q^4+q^2+ q^{-4} - q^{-6} - q^{-10} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}+q^{48}-q^{44}-q^{42}-q^{38}-2 q^{36}-2 q^{34}-2 q^{32}-q^{30}-q^{28}+2 q^{22}+2 q^{20}+3 q^{18}+2 q^{16}+3 q^{14}+3 q^{12}+2 q^{10}+q^6-1- q^{-2} - q^{-4} - q^{-8} - q^{-10} + q^{-16} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}+q^{76}-q^{74}-2 q^{68}+q^{66}-q^{64}-q^{62}-q^{60}-2 q^{58}-3 q^{52}-q^{50}-q^{48}+q^{44}-2 q^{42}+q^{40}+q^{38}+2 q^{36}+q^{34}+2 q^{30}+2 q^{28}+3 q^{26}+2 q^{22}+3 q^{20}+q^{18}+q^{16}+q^{14}+3 q^{10}-2 q^6+q^4+1- q^{-2} -2 q^{-4} - q^{-12} - q^{-14} - q^{-20} + q^{-24} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 20"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2-2 t+3-2 t^{-1} + t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4+2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 9, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_140, K11n73, K11n74,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 20"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2-2 t+3-2 t^{-1} + t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q+2- q^{-1} +2 q^{-2} - q^{-3} + q^{-4} - q^{-5} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_140, K11n73, K11n74,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (2, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 20. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^2+q+1-2 q^{-1} +2 q^{-2} + q^{-3} -2 q^{-4} + q^{-5} +2 q^{-6} -2 q^{-7} +2 q^{-9} -2 q^{-10} - q^{-11} +2 q^{-12} - q^{-13} - q^{-14} + q^{-15} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^7-q^6-q^5-q^4+2 q^3+2 q^2-3 q-1+2 q^{-1} +4 q^{-2} -3 q^{-3} -2 q^{-4} + q^{-5} +4 q^{-6} -3 q^{-7} - q^{-8} + q^{-9} +2 q^{-10} -2 q^{-11} + q^{-14} - q^{-17} - q^{-18} + q^{-19} + q^{-20} - q^{-21} -2 q^{-22} + q^{-23} +2 q^{-24} -2 q^{-26} + q^{-28} + q^{-29} - q^{-30} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{12}+q^{11}+2 q^{10}-q^8-5 q^7+5 q^5+3 q^4-10 q^2-2 q+8+6 q^{-1} +2 q^{-2} -11 q^{-3} -4 q^{-4} +7 q^{-5} +7 q^{-6} +2 q^{-7} -11 q^{-8} -4 q^{-9} +7 q^{-10} +5 q^{-11} +2 q^{-12} -10 q^{-13} -4 q^{-14} +7 q^{-15} +4 q^{-16} +2 q^{-17} -8 q^{-18} -4 q^{-19} +6 q^{-20} +2 q^{-21} +3 q^{-22} -5 q^{-23} -4 q^{-24} +4 q^{-25} +3 q^{-27} -2 q^{-28} -3 q^{-29} +2 q^{-30} -2 q^{-31} +2 q^{-32} - q^{-34} +3 q^{-35} -3 q^{-36} +4 q^{-40} -2 q^{-41} - q^{-42} - q^{-43} - q^{-44} +3 q^{-45} - q^{-48} - q^{-49} + q^{-50} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}+2 q^{14}+2 q^{13}-2 q^{11}-6 q^{10}-2 q^9+5 q^8+8 q^7+4 q^6-6 q^5-11 q^4-7 q^3+5 q^2+14 q+10-6 q^{-1} -13 q^{-2} -10 q^{-3} +3 q^{-4} +15 q^{-5} +13 q^{-6} -5 q^{-7} -13 q^{-8} -11 q^{-9} +2 q^{-10} +14 q^{-11} +13 q^{-12} -5 q^{-13} -13 q^{-14} -10 q^{-15} +2 q^{-16} +13 q^{-17} +11 q^{-18} -5 q^{-19} -11 q^{-20} -9 q^{-21} + q^{-22} +11 q^{-23} +10 q^{-24} -2 q^{-25} -9 q^{-26} -9 q^{-27} - q^{-28} +8 q^{-29} +10 q^{-30} + q^{-31} -6 q^{-32} -8 q^{-33} -4 q^{-34} +5 q^{-35} +8 q^{-36} +4 q^{-37} -3 q^{-38} -6 q^{-39} -5 q^{-40} +5 q^{-42} +5 q^{-43} -2 q^{-45} -4 q^{-46} -2 q^{-47} + q^{-48} +3 q^{-49} + q^{-50} + q^{-51} - q^{-52} - q^{-53} - q^{-56} + q^{-58} + q^{-59} + q^{-60} -2 q^{-62} -2 q^{-63} + q^{-65} + q^{-66} +2 q^{-67} -2 q^{-69} - q^{-70} + q^{-73} + q^{-74} - q^{-75} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-q^{25}-q^{24}-q^{20}+5 q^{19}+q^{18}-4 q^{15}-7 q^{14}-6 q^{13}+9 q^{12}+7 q^{11}+8 q^{10}+5 q^9-6 q^8-19 q^7-17 q^6+10 q^5+11 q^4+17 q^3+13 q^2-4 q-24-25 q^{-1} +7 q^{-2} +10 q^{-3} +20 q^{-4} +18 q^{-5} -24 q^{-7} -27 q^{-8} +4 q^{-9} +8 q^{-10} +19 q^{-11} +19 q^{-12} + q^{-13} -23 q^{-14} -26 q^{-15} +4 q^{-16} +8 q^{-17} +18 q^{-18} +17 q^{-19} -22 q^{-21} -25 q^{-22} +5 q^{-23} +8 q^{-24} +17 q^{-25} +15 q^{-26} - q^{-27} -19 q^{-28} -23 q^{-29} +5 q^{-30} +5 q^{-31} +14 q^{-32} +14 q^{-33} + q^{-34} -13 q^{-35} -20 q^{-36} +2 q^{-37} + q^{-38} +10 q^{-39} +13 q^{-40} +5 q^{-41} -6 q^{-42} -17 q^{-43} -2 q^{-44} -4 q^{-45} +5 q^{-46} +12 q^{-47} +9 q^{-48} + q^{-49} -12 q^{-50} -4 q^{-51} -9 q^{-52} - q^{-53} +8 q^{-54} +9 q^{-55} +7 q^{-56} -5 q^{-57} -2 q^{-58} -10 q^{-59} -6 q^{-60} +2 q^{-61} +5 q^{-62} +9 q^{-63} + q^{-64} +3 q^{-65} -6 q^{-66} -6 q^{-67} -3 q^{-68} - q^{-69} +6 q^{-70} + q^{-71} +5 q^{-72} -2 q^{-74} -3 q^{-75} -3 q^{-76} +3 q^{-77} -3 q^{-78} +2 q^{-79} + q^{-80} + q^{-81} - q^{-83} +4 q^{-84} -4 q^{-85} - q^{-86} - q^{-87} +5 q^{-91} - q^{-92} - q^{-94} - q^{-95} -2 q^{-96} - q^{-97} +3 q^{-98} + q^{-100} - q^{-103} - q^{-104} + q^{-105} } |
| 7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{35}+q^{34}+q^{33}+q^{32}-2 q^{30}-q^{29}-2 q^{28}-3 q^{27}+4 q^{25}+6 q^{24}+7 q^{23}-q^{21}-7 q^{20}-14 q^{19}-10 q^{18}+11 q^{16}+21 q^{15}+16 q^{14}+6 q^{13}-9 q^{12}-28 q^{11}-26 q^{10}-16 q^9+6 q^8+34 q^7+35 q^6+21 q^5-3 q^4-33 q^3-38 q^2-30 q-3+34 q^{-1} +44 q^{-2} +31 q^{-3} +6 q^{-4} -31 q^{-5} -39 q^{-6} -35 q^{-7} -10 q^{-8} +30 q^{-9} +42 q^{-10} +32 q^{-11} +10 q^{-12} -28 q^{-13} -38 q^{-14} -34 q^{-15} -11 q^{-16} +29 q^{-17} +40 q^{-18} +31 q^{-19} +9 q^{-20} -28 q^{-21} -38 q^{-22} -33 q^{-23} -9 q^{-24} +30 q^{-25} +40 q^{-26} +30 q^{-27} +6 q^{-28} -28 q^{-29} -37 q^{-30} -31 q^{-31} -7 q^{-32} +28 q^{-33} +38 q^{-34} +27 q^{-35} +5 q^{-36} -24 q^{-37} -34 q^{-38} -28 q^{-39} -7 q^{-40} +23 q^{-41} +33 q^{-42} +24 q^{-43} +6 q^{-44} -17 q^{-45} -28 q^{-46} -25 q^{-47} -9 q^{-48} +14 q^{-49} +26 q^{-50} +22 q^{-51} +10 q^{-52} -8 q^{-53} -20 q^{-54} -21 q^{-55} -13 q^{-56} +3 q^{-57} +16 q^{-58} +19 q^{-59} +13 q^{-60} +3 q^{-61} -10 q^{-62} -15 q^{-63} -14 q^{-64} -8 q^{-65} +4 q^{-66} +11 q^{-67} +14 q^{-68} +11 q^{-69} -5 q^{-71} -10 q^{-72} -13 q^{-73} -7 q^{-74} +7 q^{-76} +13 q^{-77} +6 q^{-78} +6 q^{-79} -10 q^{-81} -9 q^{-82} -8 q^{-83} -3 q^{-84} +5 q^{-85} +5 q^{-86} +10 q^{-87} +9 q^{-88} -2 q^{-89} -3 q^{-90} -6 q^{-91} -9 q^{-92} -3 q^{-93} -3 q^{-94} +5 q^{-95} +9 q^{-96} +2 q^{-97} +4 q^{-98} + q^{-99} -5 q^{-100} -3 q^{-101} -6 q^{-102} -2 q^{-103} +4 q^{-104} - q^{-105} +3 q^{-106} +3 q^{-107} +2 q^{-109} -2 q^{-110} -2 q^{-111} +2 q^{-112} -3 q^{-113} - q^{-114} -2 q^{-116} +3 q^{-117} + q^{-118} +3 q^{-120} - q^{-123} -4 q^{-124} - q^{-127} +2 q^{-128} + q^{-129} +2 q^{-130} + q^{-131} -2 q^{-132} - q^{-133} - q^{-135} + q^{-138} + q^{-139} - q^{-140} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|








