8 21
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 21's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3849 X12,6,13,5 X13,16,14,1 X9,14,10,15 X15,10,16,11 X6,12,7,11 X7283 |
| Gauss code | -1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4 |
| Dowker-Thistlethwaite code | 4 8 -12 2 14 -6 16 10 |
| Conway Notation | [21,21,2-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
|
![]() [{9, 3}, {2, 7}, {6, 8}, {7, 9}, {4, 1}, {3, 6}, {5, 2}, {8, 4}, {1, 5}] |
[edit Notes on presentations of 8 21]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 21"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X12,6,13,5 X13,16,14,1 X9,14,10,15 X15,10,16,11 X6,12,7,11 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -12 2 14 -6 16 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[21,21,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(3,\{-1,-1,-1,-2,1,1,-2,-2\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 8, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{9, 3}, {2, 7}, {6, 8}, {7, 9}, {4, 1}, {3, 6}, {5, 2}, {8, 4}, {1, 5}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^2+4 t-5+4 t^{-1} - t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-z^4} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 15, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-1} -2 q^{-2} +3 q^{-3} -3 q^{-4} +2 q^{-5} -2 q^{-6} + q^{-7} } |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^8-2 z^2 a^8+2 z^5 a^7-5 z^3 a^7+2 z a^7+z^6 a^6-z^4 a^6-a^6+3 z^5 a^5-6 z^3 a^5+4 z a^5+z^6 a^4-2 z^4 a^4+5 z^2 a^4-3 a^4+z^5 a^3-z^3 a^3+2 z a^3+3 z^2 a^2-3 a^2} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-2 q^{14}-q^{12}-q^{10}+q^8+2 q^6+q^4+2 q^2} |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-q^{112}+2 q^{110}-3 q^{108}+q^{104}-4 q^{102}+5 q^{100}-4 q^{98}+3 q^{96}+q^{94}-4 q^{92}+5 q^{90}-2 q^{88}+2 q^{86}+2 q^{84}-4 q^{82}+4 q^{80}+2 q^{78}-2 q^{76}+4 q^{74}-4 q^{72}+3 q^{70}-4 q^{66}+3 q^{64}-7 q^{62}+5 q^{60}-4 q^{58}-3 q^{56}+2 q^{54}-6 q^{52}+4 q^{50}-5 q^{48}-q^{46}+2 q^{44}-3 q^{42}+2 q^{40}-3 q^{36}+7 q^{34}-2 q^{32}+3 q^{28}-3 q^{26}+7 q^{24}-2 q^{22}+2 q^{20}+q^{18}-q^{16}+4 q^{14}-q^{12}+2 q^{10}+q^8} |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-q^{13}-q^9+q^5+2 q} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}-q^{40}-2 q^{38}+2 q^{36}+q^{34}-2 q^{32}+q^{30}+2 q^{28}-2 q^{26}+q^{22}-q^{20}-q^{18}+2 q^{14}-2 q^{12}-q^{10}+3 q^8-q^6-q^4+3 q^2+1} |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{81}-q^{79}-2 q^{77}+3 q^{73}+3 q^{71}-3 q^{69}-4 q^{67}+q^{65}+5 q^{63}+q^{61}-6 q^{59}-4 q^{57}+5 q^{55}+4 q^{53}-3 q^{51}-4 q^{49}+4 q^{47}+5 q^{45}-2 q^{43}-3 q^{41}+2 q^{37}-q^{35}-2 q^{33}-3 q^{31}+2 q^{29}+4 q^{27}-6 q^{23}-q^{21}+7 q^{19}+3 q^{17}-6 q^{15}-3 q^{13}+4 q^{11}+4 q^9-2 q^7-4 q^5+2 q^3+2 q+2 q^{-1} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{132}-q^{130}-2 q^{128}+q^{124}+5 q^{122}+q^{120}-3 q^{118}-5 q^{116}-6 q^{114}+6 q^{112}+8 q^{110}+4 q^{108}-4 q^{106}-14 q^{104}-4 q^{102}+7 q^{100}+15 q^{98}+8 q^{96}-13 q^{94}-14 q^{92}-3 q^{90}+15 q^{88}+15 q^{86}-6 q^{84}-16 q^{82}-11 q^{80}+9 q^{78}+14 q^{76}-q^{74}-10 q^{72}-8 q^{70}+6 q^{68}+11 q^{66}+2 q^{64}-5 q^{62}-5 q^{60}+2 q^{58}+5 q^{56}+4 q^{54}-2 q^{52}-5 q^{50}-6 q^{48}+11 q^{44}+4 q^{42}-6 q^{40}-15 q^{38}-7 q^{36}+15 q^{34}+14 q^{32}+q^{30}-18 q^{28}-15 q^{26}+11 q^{24}+16 q^{22}+10 q^{20}-9 q^{18}-15 q^{16}+7 q^{12}+10 q^{10}-7 q^6-3 q^4-q^2+3+3 q^{-2} + q^{-4} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{195}-q^{193}-2 q^{191}+q^{187}+3 q^{185}+3 q^{183}+q^{181}-5 q^{179}-7 q^{177}-4 q^{175}+q^{173}+8 q^{171}+12 q^{169}+7 q^{167}-8 q^{165}-16 q^{163}-15 q^{161}-3 q^{159}+16 q^{157}+26 q^{155}+18 q^{153}-8 q^{151}-29 q^{149}-32 q^{147}-11 q^{145}+25 q^{143}+42 q^{141}+26 q^{139}-14 q^{137}-45 q^{135}-41 q^{133}+41 q^{129}+49 q^{127}+17 q^{125}-33 q^{123}-49 q^{121}-23 q^{119}+22 q^{117}+46 q^{115}+27 q^{113}-14 q^{111}-40 q^{109}-26 q^{107}+9 q^{105}+30 q^{103}+21 q^{101}-7 q^{99}-24 q^{97}-18 q^{95}+5 q^{93}+18 q^{91}+11 q^{89}-q^{87}-11 q^{85}-12 q^{83}+9 q^{79}+10 q^{77}+9 q^{75}-2 q^{73}-15 q^{71}-15 q^{69}-q^{67}+17 q^{65}+27 q^{63}+12 q^{61}-19 q^{59}-37 q^{57}-25 q^{55}+15 q^{53}+45 q^{51}+36 q^{49}-9 q^{47}-50 q^{45}-48 q^{43}-7 q^{41}+46 q^{39}+54 q^{37}+16 q^{35}-32 q^{33}-52 q^{31}-27 q^{29}+16 q^{27}+43 q^{25}+33 q^{23}-q^{21}-24 q^{19}-25 q^{17}-9 q^{15}+10 q^{13}+21 q^{11}+10 q^9-2 q^7-6 q^5-10 q^3-4 q+2 q^{-1} +4 q^{-3} +2 q^{-5} +2 q^{-7} } |
| 6 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-2 q^{14}-q^{12}-q^{10}+q^8+2 q^6+q^4+2 q^2} |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-2 q^{58}+4 q^{56}-8 q^{54}+9 q^{52}-10 q^{50}+12 q^{48}-8 q^{46}+4 q^{44}-8 q^{40}+10 q^{38}-15 q^{36}+18 q^{34}-16 q^{32}+20 q^{30}-12 q^{28}+12 q^{26}-6 q^{24}-2 q^{22}+q^{20}-14 q^{18}+8 q^{16}-12 q^{14}+10 q^{12}-4 q^{10}+8 q^8+2 q^6+4 q^4+2 q^2} |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-q^{52}-q^{50}+q^{46}-q^{44}+q^{40}-q^{36}+2 q^{32}+2 q^{30}+q^{28}+q^{26}-q^{24}-3 q^{22}-2 q^{20}-2 q^{18}-3 q^{16}-q^{14}+2 q^{12}+2 q^{10}+2 q^8+2 q^6+4 q^4+q^2} |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-q^{46}-3 q^{40}+q^{38}+q^{36}+3 q^{32}+4 q^{30}+q^{28}-2 q^{24}-4 q^{22}-5 q^{20}-5 q^{18}+2 q^{12}+6 q^{10}+3 q^8+q^6+3 q^4} |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{29}+q^{25}-2 q^{19}-2 q^{17}-2 q^{15}-q^{13}+q^{11}+2 q^9+3 q^7+q^5+2 q^3} |
| 1,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{78}-2 q^{76}+3 q^{74}-3 q^{72}-q^{70}+5 q^{68}-8 q^{66}+10 q^{64}-6 q^{62}+2 q^{60}+5 q^{58}-11 q^{56}+12 q^{54}-12 q^{52}+2 q^{50}-q^{48}-6 q^{46}+q^{44}+q^{42}+6 q^{40}+3 q^{38}+18 q^{36}-3 q^{34}+13 q^{32}-5 q^{30}-11 q^{28}-2 q^{26}-25 q^{24}-2 q^{22}-11 q^{20}-4 q^{18}+9 q^{16}+3 q^{14}+12 q^{12}+10 q^{10}+5 q^8+5 q^6+2 q^4} |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}+q^{32}+q^{30}-2 q^{24}-2 q^{22}-3 q^{20}-2 q^{18}-q^{16}+q^{14}+2 q^{12}+3 q^{10}+3 q^8+q^6+2 q^4} |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-q^{46}+2 q^{44}-2 q^{42}+q^{40}-q^{38}+q^{36}-q^{32}+2 q^{30}-3 q^{28}+2 q^{26}-4 q^{24}+2 q^{22}-3 q^{20}+q^{18}+2 q^{12}+3 q^8-q^6+3 q^4} |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{78}-q^{74}-q^{72}+q^{70}+q^{68}-2 q^{66}-2 q^{64}+2 q^{60}+q^{58}-q^{56}+2 q^{52}+2 q^{50}+q^{48}+q^{44}+q^{42}-3 q^{38}-2 q^{36}-q^{34}-q^{32}-3 q^{30}-3 q^{28}+q^{24}-q^{20}+2 q^{18}+3 q^{16}+3 q^{14}+q^8+3 q^6} |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}-q^{64}+q^{62}-2 q^{60}+q^{58}-2 q^{56}-q^{52}+q^{50}+q^{48}+q^{46}+4 q^{44}+2 q^{42}+4 q^{40}-q^{38}+2 q^{36}-4 q^{34}-q^{32}-7 q^{30}-4 q^{28}-6 q^{26}-2 q^{24}-q^{22}+3 q^{18}+3 q^{16}+6 q^{14}+3 q^{12}+4 q^{10}+3 q^6} |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-q^{112}+2 q^{110}-3 q^{108}+q^{104}-4 q^{102}+5 q^{100}-4 q^{98}+3 q^{96}+q^{94}-4 q^{92}+5 q^{90}-2 q^{88}+2 q^{86}+2 q^{84}-4 q^{82}+4 q^{80}+2 q^{78}-2 q^{76}+4 q^{74}-4 q^{72}+3 q^{70}-4 q^{66}+3 q^{64}-7 q^{62}+5 q^{60}-4 q^{58}-3 q^{56}+2 q^{54}-6 q^{52}+4 q^{50}-5 q^{48}-q^{46}+2 q^{44}-3 q^{42}+2 q^{40}-3 q^{36}+7 q^{34}-2 q^{32}+3 q^{28}-3 q^{26}+7 q^{24}-2 q^{22}+2 q^{20}+q^{18}-q^{16}+4 q^{14}-q^{12}+2 q^{10}+q^8} |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 21"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^2+4 t-5+4 t^{-1} - t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-z^4} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 15, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-1} -2 q^{-2} +3 q^{-3} -3 q^{-4} +2 q^{-5} -2 q^{-6} + q^{-7} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^8-2 z^2 a^8+2 z^5 a^7-5 z^3 a^7+2 z a^7+z^6 a^6-z^4 a^6-a^6+3 z^5 a^5-6 z^3 a^5+4 z a^5+z^6 a^4-2 z^4 a^4+5 z^2 a^4-3 a^4+z^5 a^3-z^3 a^3+2 z a^3+3 z^2 a^2-3 a^2} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_136,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 21"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^2+4 t-5+4 t^{-1} - t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-1} -2 q^{-2} +3 q^{-3} -3 q^{-4} +2 q^{-5} -2 q^{-6} + q^{-7} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_136,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (0, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 8 21. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-1} +2 q^{-2} -4 q^{-3} + q^{-4} +6 q^{-5} -8 q^{-6} +10 q^{-8} -10 q^{-9} - q^{-10} +10 q^{-11} -8 q^{-12} -2 q^{-13} +8 q^{-14} -4 q^{-15} -3 q^{-16} +5 q^{-17} - q^{-18} -2 q^{-19} + q^{-20} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-1} -6 q^{-4} +4 q^{-5} +6 q^{-6} -13 q^{-8} + q^{-9} +15 q^{-10} +4 q^{-11} -21 q^{-12} -4 q^{-13} +21 q^{-14} +8 q^{-15} -23 q^{-16} -9 q^{-17} +22 q^{-18} +9 q^{-19} -20 q^{-20} -11 q^{-21} +19 q^{-22} +10 q^{-23} -13 q^{-24} -12 q^{-25} +11 q^{-26} +11 q^{-27} -6 q^{-28} -11 q^{-29} +2 q^{-30} +9 q^{-31} + q^{-32} -7 q^{-33} -2 q^{-34} +4 q^{-35} +2 q^{-36} - q^{-37} -2 q^{-38} + q^{-39} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+2 q^{-1} -4 q^{-3} -2 q^{-4} -3 q^{-5} +9 q^{-6} +10 q^{-7} -7 q^{-8} -9 q^{-9} -18 q^{-10} +15 q^{-11} +29 q^{-12} - q^{-13} -14 q^{-14} -44 q^{-15} +12 q^{-16} +48 q^{-17} +12 q^{-18} -13 q^{-19} -66 q^{-20} +4 q^{-21} +57 q^{-22} +22 q^{-23} -6 q^{-24} -77 q^{-25} -2 q^{-26} +58 q^{-27} +25 q^{-28} -76 q^{-30} -5 q^{-31} +51 q^{-32} +25 q^{-33} +7 q^{-34} -67 q^{-35} -10 q^{-36} +37 q^{-37} +23 q^{-38} +16 q^{-39} -52 q^{-40} -15 q^{-41} +17 q^{-42} +18 q^{-43} +26 q^{-44} -31 q^{-45} -15 q^{-46} - q^{-47} +7 q^{-48} +27 q^{-49} -10 q^{-50} -8 q^{-51} -9 q^{-52} -4 q^{-53} +17 q^{-54} -5 q^{-57} -6 q^{-58} +5 q^{-59} + q^{-60} +2 q^{-61} - q^{-62} -2 q^{-63} + q^{-64} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q+2 q^{-1} -2 q^{-2} -6 q^{-3} -6 q^{-4} +6 q^{-5} +4 q^{-6} +14 q^{-7} +9 q^{-8} -17 q^{-9} -25 q^{-10} -10 q^{-11} +5 q^{-12} +37 q^{-13} +43 q^{-14} -7 q^{-15} -52 q^{-16} -53 q^{-17} -20 q^{-18} +57 q^{-19} +91 q^{-20} +31 q^{-21} -60 q^{-22} -106 q^{-23} -61 q^{-24} +55 q^{-25} +132 q^{-26} +76 q^{-27} -51 q^{-28} -136 q^{-29} -101 q^{-30} +43 q^{-31} +150 q^{-32} +107 q^{-33} -36 q^{-34} -146 q^{-35} -119 q^{-36} +29 q^{-37} +150 q^{-38} +120 q^{-39} -25 q^{-40} -145 q^{-41} -120 q^{-42} +20 q^{-43} +138 q^{-44} +121 q^{-45} -15 q^{-46} -133 q^{-47} -113 q^{-48} +7 q^{-49} +115 q^{-50} +115 q^{-51} +2 q^{-52} -105 q^{-53} -104 q^{-54} -14 q^{-55} +80 q^{-56} +101 q^{-57} +28 q^{-58} -64 q^{-59} -85 q^{-60} -38 q^{-61} +35 q^{-62} +75 q^{-63} +44 q^{-64} -14 q^{-65} -53 q^{-66} -46 q^{-67} -6 q^{-68} +34 q^{-69} +40 q^{-70} +17 q^{-71} -13 q^{-72} -30 q^{-73} -23 q^{-74} -2 q^{-75} +19 q^{-76} +20 q^{-77} +8 q^{-78} -4 q^{-79} -15 q^{-80} -12 q^{-81} +8 q^{-83} +7 q^{-84} +4 q^{-85} -7 q^{-87} -4 q^{-88} + q^{-89} +2 q^{-90} + q^{-91} +2 q^{-92} - q^{-93} -2 q^{-94} + q^{-95} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3+2 q^2-2 q^{-1} -4 q^{-2} -8 q^{-3} -3 q^{-4} +9 q^{-5} +16 q^{-6} +11 q^{-7} +6 q^{-8} -5 q^{-9} -38 q^{-10} -34 q^{-11} -9 q^{-12} +34 q^{-13} +49 q^{-14} +54 q^{-15} +35 q^{-16} -65 q^{-17} -104 q^{-18} -86 q^{-19} +5 q^{-20} +75 q^{-21} +147 q^{-22} +146 q^{-23} -36 q^{-24} -165 q^{-25} -211 q^{-26} -90 q^{-27} +46 q^{-28} +229 q^{-29} +295 q^{-30} +52 q^{-31} -173 q^{-32} -320 q^{-33} -209 q^{-34} -30 q^{-35} +263 q^{-36} +414 q^{-37} +151 q^{-38} -140 q^{-39} -377 q^{-40} -292 q^{-41} -109 q^{-42} +258 q^{-43} +473 q^{-44} +215 q^{-45} -100 q^{-46} -390 q^{-47} -324 q^{-48} -160 q^{-49} +239 q^{-50} +488 q^{-51} +241 q^{-52} -75 q^{-53} -382 q^{-54} -326 q^{-55} -182 q^{-56} +221 q^{-57} +477 q^{-58} +247 q^{-59} -58 q^{-60} -360 q^{-61} -313 q^{-62} -192 q^{-63} +193 q^{-64} +443 q^{-65} +247 q^{-66} -30 q^{-67} -315 q^{-68} -288 q^{-69} -208 q^{-70} +140 q^{-71} +379 q^{-72} +245 q^{-73} +23 q^{-74} -234 q^{-75} -244 q^{-76} -231 q^{-77} +56 q^{-78} +281 q^{-79} +228 q^{-80} +86 q^{-81} -120 q^{-82} -170 q^{-83} -235 q^{-84} -35 q^{-85} +152 q^{-86} +174 q^{-87} +121 q^{-88} -7 q^{-89} -65 q^{-90} -190 q^{-91} -86 q^{-92} +29 q^{-93} +84 q^{-94} +98 q^{-95} +54 q^{-96} +30 q^{-97} -100 q^{-98} -72 q^{-99} -35 q^{-100} +4 q^{-101} +33 q^{-102} +46 q^{-103} +64 q^{-104} -22 q^{-105} -22 q^{-106} -32 q^{-107} -21 q^{-108} -14 q^{-109} +7 q^{-110} +43 q^{-111} +4 q^{-112} +8 q^{-113} -6 q^{-114} -8 q^{-115} -17 q^{-116} -10 q^{-117} +13 q^{-118} + q^{-119} +8 q^{-120} +3 q^{-121} +3 q^{-122} -7 q^{-123} -6 q^{-124} +3 q^{-125} -2 q^{-126} +2 q^{-127} + q^{-128} +2 q^{-129} - q^{-130} -2 q^{-131} + q^{-132} } |
| 7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^5+2 q^3-2 q-6-4 q^{-1} -6 q^{-2} +4 q^{-4} +16 q^{-5} +24 q^{-6} +15 q^{-7} -9 q^{-8} -23 q^{-9} -37 q^{-10} -45 q^{-11} -25 q^{-12} +17 q^{-13} +81 q^{-14} +98 q^{-15} +55 q^{-16} +8 q^{-17} -74 q^{-18} -151 q^{-19} -161 q^{-20} -87 q^{-21} +83 q^{-22} +223 q^{-23} +236 q^{-24} +188 q^{-25} +3 q^{-26} -240 q^{-27} -376 q^{-28} -357 q^{-29} -83 q^{-30} +249 q^{-31} +454 q^{-32} +510 q^{-33} +257 q^{-34} -187 q^{-35} -546 q^{-36} -691 q^{-37} -415 q^{-38} +115 q^{-39} +563 q^{-40} +832 q^{-41} +601 q^{-42} +6 q^{-43} -578 q^{-44} -954 q^{-45} -745 q^{-46} -115 q^{-47} +541 q^{-48} +1023 q^{-49} +886 q^{-50} +224 q^{-51} -512 q^{-52} -1072 q^{-53} -964 q^{-54} -303 q^{-55} +451 q^{-56} +1086 q^{-57} +1036 q^{-58} +372 q^{-59} -424 q^{-60} -1093 q^{-61} -1056 q^{-62} -406 q^{-63} +378 q^{-64} +1078 q^{-65} +1082 q^{-66} +436 q^{-67} -359 q^{-68} -1072 q^{-69} -1078 q^{-70} -446 q^{-71} +336 q^{-72} +1051 q^{-73} +1075 q^{-74} +455 q^{-75} -314 q^{-76} -1032 q^{-77} -1068 q^{-78} -461 q^{-79} +299 q^{-80} +1000 q^{-81} +1043 q^{-82} +468 q^{-83} -255 q^{-84} -956 q^{-85} -1032 q^{-86} -482 q^{-87} +220 q^{-88} +897 q^{-89} +985 q^{-90} +499 q^{-91} -139 q^{-92} -812 q^{-93} -954 q^{-94} -527 q^{-95} +70 q^{-96} +711 q^{-97} +879 q^{-98} +546 q^{-99} +40 q^{-100} -572 q^{-101} -813 q^{-102} -564 q^{-103} -136 q^{-104} +432 q^{-105} +694 q^{-106} +552 q^{-107} +245 q^{-108} -268 q^{-109} -572 q^{-110} -524 q^{-111} -311 q^{-112} +113 q^{-113} +415 q^{-114} +454 q^{-115} +361 q^{-116} +24 q^{-117} -269 q^{-118} -352 q^{-119} -353 q^{-120} -123 q^{-121} +117 q^{-122} +236 q^{-123} +315 q^{-124} +173 q^{-125} -7 q^{-126} -119 q^{-127} -232 q^{-128} -178 q^{-129} -65 q^{-130} +15 q^{-131} +146 q^{-132} +147 q^{-133} +92 q^{-134} +45 q^{-135} -69 q^{-136} -87 q^{-137} -78 q^{-138} -78 q^{-139} +3 q^{-140} +44 q^{-141} +56 q^{-142} +69 q^{-143} +14 q^{-144} - q^{-145} -12 q^{-146} -54 q^{-147} -29 q^{-148} -15 q^{-149} +2 q^{-150} +29 q^{-151} +12 q^{-152} +15 q^{-153} +17 q^{-154} -8 q^{-155} -11 q^{-156} -14 q^{-157} -12 q^{-158} +6 q^{-159} - q^{-160} +3 q^{-161} +10 q^{-162} +3 q^{-163} +2 q^{-164} -4 q^{-165} -6 q^{-166} + q^{-167} -2 q^{-169} +2 q^{-170} + q^{-171} +2 q^{-172} - q^{-173} -2 q^{-174} + q^{-175} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|







