10 136
From Knot Atlas
Jump to navigationJump to search
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 136's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X14,8,15,7 X18,12,19,11 X20,15,1,16 X16,19,17,20 X12,18,13,17 X6,14,7,13 |
Gauss code | -1, 4, -3, 1, -2, -10, 5, 3, -4, 2, 6, -9, 10, -5, 7, -8, 9, -6, 8, -7 |
Dowker-Thistlethwaite code | 4 8 10 -14 2 -18 -6 -20 -12 -16 |
Conway Notation | [22,22,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 4 |
![]() |
![]() [{11, 2}, {1, 7}, {9, 5}, {7, 11}, {8, 10}, {2, 9}, {6, 4}, {5, 8}, {3, 6}, {4, 1}, {10, 3}] |
[edit Notes on presentations of 10 136] The knot 10_136 is the only knot in the Rolfsen Knot Table whose braid index is smaller than the width of its minimum braid.
The next such knot is K11n8.
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_21,}
Same Jones Polynomial (up to mirroring, ): {K11n92,}
Vassiliev invariants
V2 and V3: | (0, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 136. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|