10 144: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
Line 46: | Line 39: | ||
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 120: | Line 112: | ||
q t q t q t q t</nowiki></pre></td></tr> |
q t q t q t q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
Revision as of 20:08, 28 August 2005
|
|
![]() |
Visit 10 144's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 144's page at Knotilus! Visit 10 144's page at the original Knot Atlas!
|
10 144 Further Notes and Views
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X18,11,19,12 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X20,13,1,14 X12,19,13,20 X9,2,10,3 |
Gauss code | -1, 10, -2, 1, -4, 5, -6, 7, -10, 2, 3, -9, 8, 4, -7, 6, -5, -3, 9, -8 |
Dowker-Thistlethwaite code | 4 10 14 16 2 -18 -20 8 6 -12 |
Conway Notation | [31,21,21-] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 t^2+10 t-13+10 t^{-1} -3 t^{-2} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^4-2 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{2,t^2+t+1\right\}} |
Determinant and Signature | { 39, -2 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q-3+5 q^{-1} -7 q^{-2} +7 q^{-3} -6 q^{-4} +5 q^{-5} -3 q^{-6} + q^{-7} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^6-z^4 a^4+2 a^4-2 z^4 a^2-5 z^2 a^2-4 a^2+2 z^2+3} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^8-z^2 a^8+3 z^5 a^7-4 z^3 a^7+4 z^6 a^6-6 z^4 a^6+2 z^2 a^6+3 z^7 a^5-4 z^5 a^5+4 z^3 a^5-2 z a^5+z^8 a^4+2 z^6 a^4-2 z^4 a^4-2 z^2 a^4+2 a^4+4 z^7 a^3-8 z^5 a^3+8 z^3 a^3-2 z a^3+z^8 a^2-2 z^6 a^2+8 z^4 a^2-12 z^2 a^2+4 a^2+z^7 a-z^5 a+3 z^4-7 z^2+3} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-q^{20}-q^{18}+2 q^{16}+2 q^{12}-2 q^8-q^6-3 q^4+2 q^2+1+ q^{-2} +2 q^{-4} } |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-2 q^{46}+4 q^{44}-6 q^{42}+7 q^{40}-9 q^{38}+9 q^{36}-7 q^{34}+5 q^{32}-q^{30}-2 q^{28}+8 q^{26}-11 q^{24}+15 q^{22}-16 q^{20}+16 q^{18}-15 q^{16}+10 q^{14}-8 q^{12}+q^{10}+q^8-6 q^6+8 q^4-8 q^2+9-6 q^{-2} +7 q^{-4} -3 q^{-6} +3 q^{-8} } |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{78}-2 q^{74}-2 q^{72}+2 q^{70}+5 q^{68}-6 q^{64}-4 q^{62}+6 q^{60}+8 q^{58}-3 q^{56}-10 q^{54}-3 q^{52}+8 q^{50}+5 q^{48}-5 q^{46}-6 q^{44}+4 q^{42}+7 q^{40}-6 q^{36}+7 q^{32}+2 q^{30}-6 q^{28}-4 q^{26}+5 q^{24}+4 q^{22}-4 q^{20}-7 q^{18}+3 q^{16}+8 q^{14}-10 q^{10}-5 q^8+7 q^6+7 q^4-3 q^2-8- q^{-2} +6 q^{-4} +5 q^{-6} -2 q^{-8} -2 q^{-10} + q^{-12} +3 q^{-14} } |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}-2 q^{64}+2 q^{62}-3 q^{60}+5 q^{58}-6 q^{56}+6 q^{54}-6 q^{52}+8 q^{50}-7 q^{48}+3 q^{46}-4 q^{44}+2 q^{42}+q^{40}-5 q^{38}+6 q^{36}-5 q^{34}+14 q^{32}-9 q^{30}+14 q^{28}-11 q^{26}+14 q^{24}-10 q^{22}+6 q^{20}-11 q^{18}+q^{16}-4 q^{14}-4 q^{12}-q^{10}-7 q^8+7 q^6-5 q^4+8 q^2-4+9 q^{-2} -2 q^{-4} +6 q^{-6} -2 q^{-8} +3 q^{-10} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+4 q^{106}-q^{104}-4 q^{102}+13 q^{100}-18 q^{98}+22 q^{96}-19 q^{94}+3 q^{92}+12 q^{90}-29 q^{88}+39 q^{86}-36 q^{84}+24 q^{82}-24 q^{78}+38 q^{76}-35 q^{74}+17 q^{72}+4 q^{70}-24 q^{68}+27 q^{66}-13 q^{64}-5 q^{62}+34 q^{60}-45 q^{58}+42 q^{56}-16 q^{54}-18 q^{52}+48 q^{50}-63 q^{48}+57 q^{46}-32 q^{44}+5 q^{42}+27 q^{40}-49 q^{38}+47 q^{36}-34 q^{34}+7 q^{32}+13 q^{30}-34 q^{28}+23 q^{26}-4 q^{24}-12 q^{22}+28 q^{20}-38 q^{18}+22 q^{16}+3 q^{14}-29 q^{12}+44 q^{10}-46 q^8+30 q^6-17 q^2+29-29 q^{-2} +25 q^{-4} -7 q^{-6} -4 q^{-8} +9 q^{-10} -10 q^{-12} +8 q^{-14} - q^{-16} + q^{-18} + q^{-20} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 144"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 t^2+10 t-13+10 t^{-1} -3 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^4-2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{2,t^2+t+1\right\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 39, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q-3+5 q^{-1} -7 q^{-2} +7 q^{-3} -6 q^{-4} +5 q^{-5} -3 q^{-6} + q^{-7} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^6-z^4 a^4+2 a^4-2 z^4 a^2-5 z^2 a^2-4 a^2+2 z^2+3} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^8-z^2 a^8+3 z^5 a^7-4 z^3 a^7+4 z^6 a^6-6 z^4 a^6+2 z^2 a^6+3 z^7 a^5-4 z^5 a^5+4 z^3 a^5-2 z a^5+z^8 a^4+2 z^6 a^4-2 z^4 a^4-2 z^2 a^4+2 a^4+4 z^7 a^3-8 z^5 a^3+8 z^3 a^3-2 z a^3+z^8 a^2-2 z^6 a^2+8 z^4 a^2-12 z^2 a^2+4 a^2+z^7 a-z^5 a+3 z^4-7 z^2+3} |
Vassiliev invariants
V2 and V3: | (-2, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 144. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 144]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 144]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[18, 11, 19, 12], X[5, 15, 6, 14],X[17, 7, 18, 6], X[7, 17, 8, 16], X[15, 9, 16, 8], X[20, 13, 1, 14],X[12, 19, 13, 20], X[9, 2, 10, 3]] |
In[4]:= | GaussCode[Knot[10, 144]] |
Out[4]= | GaussCode[-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, 3, -9, 8, 4, -7, 6, -5, -3, 9, -8] |
In[5]:= | BR[Knot[10, 144]] |
Out[5]= | BR[4, {-1, -1, -2, 1, -2, -1, 3, -2, -1, 3, 2}] |
In[6]:= | alex = Alexander[Knot[10, 144]][t] |
Out[6]= | 3 10 2 |
In[7]:= | Conway[Knot[10, 144]][z] |
Out[7]= | 2 4 1 - 2 z - 3 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 144], Knot[11, NonAlternating, 99]} |
In[9]:= | {KnotDet[Knot[10, 144]], KnotSignature[Knot[10, 144]]} |
Out[9]= | {39, -2} |
In[10]:= | J=Jones[Knot[10, 144]][q] |
Out[10]= | -7 3 5 6 7 7 5 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 144]} |
In[12]:= | A2Invariant[Knot[10, 144]][q] |
Out[12]= | -22 -20 -18 2 2 2 -6 3 2 2 4 |
In[13]:= | Kauffman[Knot[10, 144]][a, z] |
Out[13]= | 2 4 3 5 2 2 2 4 2 |
In[14]:= | {Vassiliev[2][Knot[10, 144]], Vassiliev[3][Knot[10, 144]]} |
Out[14]= | {0, 2} |
In[15]:= | Kh[Knot[10, 144]][q, t] |
Out[15]= | 2 4 1 2 1 3 2 3 3 |