9 30: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 16: Line 16:


{{Knot Presentations}}
{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>

[[Invariants from Braid Theory|Length]] is 9, width is 4.

[[Invariants from Braid Theory|Braid index]] is 4.
</td>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{3D Invariants}}
{{4D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[K11n130]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{[[K11n114]], ...}

{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


Line 41: Line 72:
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table>}}

{{Display Coloured Jones|J2=<math>q^{12}-3 q^{11}+2 q^{10}+8 q^9-18 q^8+4 q^7+31 q^6-43 q^5-q^4+63 q^3-63 q^2-13 q+85-66 q^{-1} -25 q^{-2} +85 q^{-3} -50 q^{-4} -31 q^{-5} +64 q^{-6} -25 q^{-7} -26 q^{-8} +33 q^{-9} -6 q^{-10} -13 q^{-11} +10 q^{-12} -3 q^{-14} + q^{-15} </math>|J3=<math>q^{24}-3 q^{23}+2 q^{22}+4 q^{21}-2 q^{20}-14 q^{19}+5 q^{18}+32 q^{17}-6 q^{16}-61 q^{15}+q^{14}+99 q^{13}+21 q^{12}-153 q^{11}-49 q^{10}+201 q^9+97 q^8-248 q^7-151 q^6+282 q^5+209 q^4-303 q^3-260 q^2+306 q+302-293 q^{-1} -330 q^{-2} +264 q^{-3} +347 q^{-4} -226 q^{-5} -344 q^{-6} +173 q^{-7} +332 q^{-8} -121 q^{-9} -297 q^{-10} +60 q^{-11} +262 q^{-12} -21 q^{-13} -203 q^{-14} -19 q^{-15} +152 q^{-16} +34 q^{-17} -99 q^{-18} -39 q^{-19} +59 q^{-20} +32 q^{-21} -29 q^{-22} -23 q^{-23} +13 q^{-24} +13 q^{-25} -5 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} </math>|J4=<math>q^{40}-3 q^{39}+2 q^{38}+4 q^{37}-6 q^{36}+2 q^{35}-13 q^{34}+16 q^{33}+27 q^{32}-28 q^{31}-13 q^{30}-61 q^{29}+61 q^{28}+129 q^{27}-46 q^{26}-82 q^{25}-238 q^{24}+112 q^{23}+387 q^{22}+55 q^{21}-172 q^{20}-661 q^{19}+24 q^{18}+779 q^{17}+411 q^{16}-133 q^{15}-1284 q^{14}-332 q^{13}+1105 q^{12}+970 q^{11}+164 q^{10}-1870 q^9-886 q^8+1191 q^7+1502 q^6+637 q^5-2198 q^4-1404 q^3+1031 q^2+1806 q+1104-2213 q^{-1} -1721 q^{-2} +718 q^{-3} +1834 q^{-4} +1448 q^{-5} -1949 q^{-6} -1806 q^{-7} +308 q^{-8} +1616 q^{-9} +1647 q^{-10} -1454 q^{-11} -1671 q^{-12} -138 q^{-13} +1180 q^{-14} +1652 q^{-15} -810 q^{-16} -1308 q^{-17} -496 q^{-18} +611 q^{-19} +1401 q^{-20} -220 q^{-21} -783 q^{-22} -599 q^{-23} +106 q^{-24} +928 q^{-25} +105 q^{-26} -288 q^{-27} -439 q^{-28} -147 q^{-29} +445 q^{-30} +143 q^{-31} -14 q^{-32} -200 q^{-33} -153 q^{-34} +145 q^{-35} +65 q^{-36} +45 q^{-37} -53 q^{-38} -73 q^{-39} +32 q^{-40} +12 q^{-41} +23 q^{-42} -6 q^{-43} -20 q^{-44} +5 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math>|J5=<math>q^{60}-3 q^{59}+2 q^{58}+4 q^{57}-6 q^{56}-2 q^{55}+3 q^{54}-2 q^{53}+11 q^{52}+15 q^{51}-22 q^{50}-37 q^{49}-6 q^{48}+26 q^{47}+78 q^{46}+63 q^{45}-61 q^{44}-184 q^{43}-145 q^{42}+82 q^{41}+334 q^{40}+352 q^{39}-46 q^{38}-575 q^{37}-711 q^{36}-120 q^{35}+856 q^{34}+1284 q^{33}+500 q^{32}-1082 q^{31}-2062 q^{30}-1232 q^{29}+1154 q^{28}+3039 q^{27}+2281 q^{26}-936 q^{25}-3985 q^{24}-3742 q^{23}+325 q^{22}+4883 q^{21}+5394 q^{20}+663 q^{19}-5450 q^{18}-7149 q^{17}-2033 q^{16}+5724 q^{15}+8776 q^{14}+3590 q^{13}-5597 q^{12}-10153 q^{11}-5200 q^{10}+5155 q^9+11178 q^8+6701 q^7-4480 q^6-11822 q^5-7986 q^4+3677 q^3+12089 q^2+9009 q-2802-12056 q^{-1} -9757 q^{-2} +1923 q^{-3} +11735 q^{-4} +10252 q^{-5} -1006 q^{-6} -11181 q^{-7} -10548 q^{-8} +93 q^{-9} +10376 q^{-10} +10624 q^{-11} +901 q^{-12} -9355 q^{-13} -10500 q^{-14} -1882 q^{-15} +8046 q^{-16} +10132 q^{-17} +2900 q^{-18} -6571 q^{-19} -9486 q^{-20} -3729 q^{-21} +4840 q^{-22} +8528 q^{-23} +4453 q^{-24} -3165 q^{-25} -7283 q^{-26} -4739 q^{-27} +1488 q^{-28} +5784 q^{-29} +4767 q^{-30} -146 q^{-31} -4248 q^{-32} -4284 q^{-33} -884 q^{-34} +2735 q^{-35} +3600 q^{-36} +1429 q^{-37} -1485 q^{-38} -2692 q^{-39} -1593 q^{-40} +543 q^{-41} +1830 q^{-42} +1422 q^{-43} +36 q^{-44} -1072 q^{-45} -1113 q^{-46} -301 q^{-47} +540 q^{-48} +746 q^{-49} +347 q^{-50} -193 q^{-51} -446 q^{-52} -294 q^{-53} +34 q^{-54} +236 q^{-55} +190 q^{-56} +26 q^{-57} -95 q^{-58} -116 q^{-59} -42 q^{-60} +45 q^{-61} +58 q^{-62} +18 q^{-63} -6 q^{-64} -21 q^{-65} -23 q^{-66} +6 q^{-67} +13 q^{-68} +2 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math>|J6=<math>q^{84}-3 q^{83}+2 q^{82}+4 q^{81}-6 q^{80}-2 q^{79}-q^{78}+14 q^{77}-7 q^{76}-q^{75}+21 q^{74}-36 q^{73}-24 q^{72}-3 q^{71}+68 q^{70}+26 q^{69}+10 q^{68}+47 q^{67}-165 q^{66}-166 q^{65}-60 q^{64}+255 q^{63}+255 q^{62}+222 q^{61}+183 q^{60}-583 q^{59}-805 q^{58}-583 q^{57}+505 q^{56}+1060 q^{55}+1356 q^{54}+1143 q^{53}-1175 q^{52}-2662 q^{51}-2873 q^{50}-298 q^{49}+2254 q^{48}+4613 q^{47}+4970 q^{46}-202 q^{45}-5504 q^{44}-8702 q^{43}-5038 q^{42}+1365 q^{41}+9631 q^{40}+13916 q^{39}+6142 q^{38}-6085 q^{37}-17419 q^{36}-16308 q^{35}-6154 q^{34}+12392 q^{33}+26764 q^{32}+20456 q^{31}+655 q^{30}-24126 q^{29}-32162 q^{28}-22522 q^{27}+7565 q^{26}+37724 q^{25}+39809 q^{24}+16353 q^{23}-23280 q^{22}-46107 q^{21}-43764 q^{20}-5863 q^{19}+41144 q^{18}+57063 q^{17}+36348 q^{16}-14213 q^{15}-52623 q^{14}-62465 q^{13}-23006 q^{12}+36529 q^{11}+66871 q^{10}+53604 q^9-1437 q^8-51360 q^7-73801 q^6-37744 q^5+27760 q^4+68954 q^3+64272 q^2+10197 q-45553-77764 q^{-1} -47408 q^{-2} +18458 q^{-3} +65948 q^{-4} +68839 q^{-5} +19152 q^{-6} -37814 q^{-7} -76599 q^{-8} -52952 q^{-9} +9292 q^{-10} +59637 q^{-11} +69304 q^{-12} +26675 q^{-13} -28185 q^{-14} -71459 q^{-15} -56063 q^{-16} -1056 q^{-17} +49597 q^{-18} +66234 q^{-19} +33915 q^{-20} -15434 q^{-21} -61480 q^{-22} -56500 q^{-23} -13004 q^{-24} +34702 q^{-25} +58150 q^{-26} +39502 q^{-27} +65 q^{-28} -45519 q^{-29} -51820 q^{-30} -23870 q^{-31} +16060 q^{-32} +43584 q^{-33} +39740 q^{-34} +14429 q^{-35} -25239 q^{-36} -39997 q^{-37} -28734 q^{-38} -1411 q^{-39} +24455 q^{-40} +32015 q^{-41} +21942 q^{-42} -6334 q^{-43} -23166 q^{-44} -24707 q^{-45} -11495 q^{-46} +6871 q^{-47} +18726 q^{-48} +19971 q^{-49} +4875 q^{-50} -7707 q^{-51} -14685 q^{-52} -12040 q^{-53} -3182 q^{-54} +6384 q^{-55} +12097 q^{-56} +6920 q^{-57} +903 q^{-58} -5206 q^{-59} -7072 q^{-60} -5060 q^{-61} -208 q^{-62} +4665 q^{-63} +4072 q^{-64} +2696 q^{-65} -342 q^{-66} -2336 q^{-67} -3022 q^{-68} -1544 q^{-69} +917 q^{-70} +1252 q^{-71} +1561 q^{-72} +669 q^{-73} -200 q^{-74} -1062 q^{-75} -880 q^{-76} -27 q^{-77} +95 q^{-78} +487 q^{-79} +368 q^{-80} +189 q^{-81} -234 q^{-82} -281 q^{-83} -50 q^{-84} -78 q^{-85} +83 q^{-86} +97 q^{-87} +106 q^{-88} -37 q^{-89} -61 q^{-90} -3 q^{-91} -35 q^{-92} +6 q^{-93} +12 q^{-94} +32 q^{-95} -6 q^{-96} -13 q^{-97} +5 q^{-98} -7 q^{-99} +5 q^{-102} -3 q^{-104} + q^{-105} </math>|J7=<math>q^{112}-3 q^{111}+2 q^{110}+4 q^{109}-6 q^{108}-2 q^{107}-q^{106}+10 q^{105}+9 q^{104}-19 q^{103}+5 q^{102}+7 q^{101}-23 q^{100}-11 q^{99}-3 q^{98}+54 q^{97}+66 q^{96}-43 q^{95}-26 q^{94}-48 q^{93}-120 q^{92}-41 q^{91}+10 q^{90}+256 q^{89}+360 q^{88}+57 q^{87}-118 q^{86}-439 q^{85}-697 q^{84}-416 q^{83}-11 q^{82}+938 q^{81}+1661 q^{80}+1136 q^{79}+234 q^{78}-1533 q^{77}-3073 q^{76}-2855 q^{75}-1462 q^{74}+2017 q^{73}+5545 q^{72}+6200 q^{71}+4188 q^{70}-1697 q^{69}-8598 q^{68}-11668 q^{67}-9984 q^{66}-939 q^{65}+11553 q^{64}+19699 q^{63}+20162 q^{62}+7772 q^{61}-12632 q^{60}-29561 q^{59}-35566 q^{58}-21280 q^{57}+8931 q^{56}+39285 q^{55}+56377 q^{54}+43541 q^{53}+2667 q^{52}-45848 q^{51}-80761 q^{50}-74920 q^{49}-25322 q^{48}+44770 q^{47}+105238 q^{46}+114826 q^{45}+60818 q^{44}-32714 q^{43}-125498 q^{42}-159320 q^{41}-108154 q^{40}+6363 q^{39}+136276 q^{38}+204052 q^{37}+165116 q^{36}+34010 q^{35}-134696 q^{34}-243111 q^{33}-225975 q^{32}-86496 q^{31}+118414 q^{30}+272168 q^{29}+285618 q^{28}+146556 q^{27}-89189 q^{26}-288323 q^{25}-338081 q^{24}-208618 q^{23}+49860 q^{22}+290962 q^{21}+379836 q^{20}+267301 q^{19}-5088 q^{18}-281941 q^{17}-409021 q^{16}-318196 q^{15}-40378 q^{14}+264251 q^{13}+425772 q^{12}+358976 q^{11}+82746 q^{10}-241485 q^9-432054 q^8-389088 q^7-119422 q^6+216898 q^5+430356 q^4+409333 q^3+149583 q^2-192532 q-423183-421788 q^{-1} -173788 q^{-2} +169564 q^{-3} +412620 q^{-4} +428330 q^{-5} +193300 q^{-6} -147605 q^{-7} -399497 q^{-8} -430936 q^{-9} -210137 q^{-10} +125684 q^{-11} +384105 q^{-12} +430664 q^{-13} +225747 q^{-14} -102197 q^{-15} -365409 q^{-16} -427749 q^{-17} -241544 q^{-18} +75535 q^{-19} +342270 q^{-20} +421529 q^{-21} +257631 q^{-22} -44562 q^{-23} -312837 q^{-24} -410688 q^{-25} -273437 q^{-26} +9110 q^{-27} +276036 q^{-28} +393037 q^{-29} +286912 q^{-30} +30306 q^{-31} -231134 q^{-32} -367093 q^{-33} -295693 q^{-34} -70743 q^{-35} +179153 q^{-36} +330748 q^{-37} +296342 q^{-38} +109569 q^{-39} -121869 q^{-40} -284915 q^{-41} -286634 q^{-42} -141581 q^{-43} +63812 q^{-44} +230046 q^{-45} +264303 q^{-46} +163756 q^{-47} -9038 q^{-48} -170584 q^{-49} -230685 q^{-50} -172069 q^{-51} -36434 q^{-52} +110653 q^{-53} +187209 q^{-54} +166245 q^{-55} +69551 q^{-56} -56314 q^{-57} -139368 q^{-58} -147372 q^{-59} -87038 q^{-60} +12099 q^{-61} +91670 q^{-62} +119293 q^{-63} +90197 q^{-64} +18811 q^{-65} -50124 q^{-66} -87023 q^{-67} -81246 q^{-68} -35776 q^{-69} +17916 q^{-70} +55884 q^{-71} +64964 q^{-72} +40523 q^{-73} +3154 q^{-74} -29803 q^{-75} -46006 q^{-76} -36794 q^{-77} -13917 q^{-78} +11200 q^{-79} +28515 q^{-80} +28303 q^{-81} +16730 q^{-82} +106 q^{-83} -14834 q^{-84} -18971 q^{-85} -14824 q^{-86} -5135 q^{-87} +5906 q^{-88} +10887 q^{-89} +10739 q^{-90} +6184 q^{-91} -907 q^{-92} -5177 q^{-93} -6764 q^{-94} -5221 q^{-95} -1033 q^{-96} +1882 q^{-97} +3592 q^{-98} +3494 q^{-99} +1452 q^{-100} -168 q^{-101} -1623 q^{-102} -2149 q^{-103} -1162 q^{-104} -277 q^{-105} +598 q^{-106} +1047 q^{-107} +671 q^{-108} +429 q^{-109} -79 q^{-110} -538 q^{-111} -402 q^{-112} -265 q^{-113} +9 q^{-114} +202 q^{-115} +121 q^{-116} +170 q^{-117} +90 q^{-118} -86 q^{-119} -87 q^{-120} -87 q^{-121} -16 q^{-122} +42 q^{-123} -5 q^{-124} +31 q^{-125} +35 q^{-126} -6 q^{-127} -12 q^{-128} -23 q^{-129} -3 q^{-130} +13 q^{-131} -5 q^{-132} +7 q^{-134} -5 q^{-137} +3 q^{-139} - q^{-140} </math>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 48: Line 82:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 30]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 30]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 30]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10],
X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12],
X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12],
X[12, 17, 13, 18], X[6, 14, 7, 13]]</nowiki></pre></td></tr>
X[12, 17, 13, 18], X[6, 14, 7, 13]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 30]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, 2, -9, 5, -3, 4, -2, 7, -8, 9, -5, 6, -7, 8, -6]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 30]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 30]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, 2, -9, 5, -3, 4, -2, 7, -8, 9, -5, 6, -7, 8, -6]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 30]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 10, 14, 2, 16, 6, 18, 12]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 30]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, 2, -1, 2, -3, 2, -3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, 2, -1, 2, -3, 2, -3}]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 30]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 12 2 3
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 30]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 30]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_30_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 30]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, {4, 6}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 30]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 12 2 3
17 - t + -- - -- - 12 t + 5 t - t
17 - t + -- - -- - 12 t + 5 t - t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 30]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 30]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 - z - z - z</nowiki></pre></td></tr>
1 - z - z - z</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 30], Knot[11, NonAlternating, 130]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 30]], KnotSignature[Knot[9, 30]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 30], Knot[11, NonAlternating, 130]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{53, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 30]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 30]], KnotSignature[Knot[9, 30]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 5 8 9 2 3 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{53, 0}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 30]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 5 8 9 2 3 4
9 - q + -- - -- + -- - - - 8 q + 6 q - 3 q + q
9 - q + -- - -- + -- - - - 8 q + 6 q - 3 q + q
4 3 2 q
4 3 2 q
q q q</nowiki></pre></td></tr>
q q q</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 30], Knot[11, NonAlternating, 114]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 30], Knot[11, NonAlternating, 114]}</nowiki></pre></td></tr>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 30]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -12 -10 3 -6 -2 2 4 6 8
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 30]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -12 -10 3 -6 -2 2 4 6 8
-3 - q + q - q + -- + q + q + q - 2 q + q + 2 q -
-3 - q + q - q + -- + q + q + q - 2 q + q + 2 q -
8
8
Line 89: Line 144:
10 12
10 12
q + q</nowiki></pre></td></tr>
q + q</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 30]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 30]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
2 2 4 2 2 z 2 2 4 2 4 z
-4 + -- + 4 a - a - 7 z + ---- + 5 a z - a z - 4 z + -- +
2 2 2
a a a
2 4 6
2 a z - z</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 30]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
2 2 4 z z 3 5 2 z
2 2 4 z z 3 5 2 z
-4 - -- - 4 a - a + -- + - + a z + 2 a z + a z + 17 z - -- +
-4 - -- - 4 a - a + -- + - + a z + 2 a z + a z + 17 z - -- +
Line 116: Line 182:
8 2 8
8 2 8
z + a z</nowiki></pre></td></tr>
z + a z</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 30]], Vassiliev[3][Knot[9, 30]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 30]], Vassiliev[3][Knot[9, 30]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 30]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, -1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 1 2 1 3 2 5 3
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 30]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 1 2 1 3 2 5 3
- + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
- + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
Line 131: Line 199:
9 4
9 4
q t</nowiki></pre></td></tr>
q t</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 30], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 3 10 13 6 33 26 25 64 31 50 85
85 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- -
14 12 11 10 9 8 7 6 5 4 3
q q q q q q q q q q q
25 66 2 3 4 5 6 7 8
-- - -- - 13 q - 63 q + 63 q - q - 43 q + 31 q + 4 q - 18 q +
2 q
q
9 10 11 12
8 q + 2 q - 3 q + q</nowiki></pre></td></tr>

</table>
</table>

See/edit the [[Rolfsen_Splice_Template]].


[[Category:Knot Page]]
[[Category:Knot Page]]

Revision as of 17:11, 29 August 2005

9 29.gif

9_29

9 31.gif

9_31

9 30.gif Visit 9 30's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 30's page at Knotilus!

Visit 9 30's page at the original Knot Atlas!

9 30 Quick Notes


9 30 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X10,6,11,5 X8394 X2,9,3,10 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13
Gauss code 1, -4, 3, -1, 2, -9, 5, -3, 4, -2, 7, -8, 9, -5, 6, -7, 8, -6
Dowker-Thistlethwaite code 4 8 10 14 2 16 6 18 12
Conway Notation [211,21,2]

Minimum Braid Representative:

BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 9, width is 4.

Braid index is 4.

A Morse Link Presentation:

9 30 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 11.9545
A-Polynomial See Data:9 30/A-polynomial

[edit Notes for 9 30's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 30's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 53, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n130, ...}

Same Jones Polynomial (up to mirroring, ): {K11n114, ...}

Vassiliev invariants

V2 and V3: (-1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 30. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        2 -2
5       41 3
3      42  -2
1     54   1
-1    55    0
-3   34     -1
-5  25      3
-7 13       -2
-9 2        2
-111         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials