10 1: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 6: Line 6:
k = 1 |
k = 1 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,10,-6,9,-7,8,-2,3,-4,2,-8,7,-9,6,-10,5/goTop.html |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,10,-6,9,-7,8,-2,3,-4,2,-8,7,-9,6,-10,5/goTop.html |
braid_table = <math>\left(\begin{array}{llllllllllll}
braid_table = <math>\left(
\begin{array}{llllllllllll}
3 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 & 4 & 3 & 2 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
4 & 4 & 3 & 2 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
Line 12: Line 13:
0 & 0 & 0 & 0 & 0 & 4 & 0 & 4 & 3 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 0 & 4 & 3 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 1 & 4 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 1 & 4 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2\end{array}\right)</math> |
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2
\end{array}
\right)</math> |
braid_crossings = 13 |
braid_crossings = 13 |
braid_width = 6 |
braid_width = 6 |
Line 45: Line 48:
coloured_jones_6 = |
coloured_jones_6 = |
coloured_jones_7 = |
coloured_jones_7 = |
computer_talk =
computer_talk_welcome_message = Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
<table>
computer_talk_contents = <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 1]]</nowiki></pre></td></tr>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[11, 14, 12, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[11, 14, 12, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],
Line 133: Line 142:
5 6
5 6
q + q</nowiki></pre></td></tr> }}
q + q</nowiki></pre></td></tr>
</table> }}

Revision as of 09:01, 30 August 2005

9 49.gif

9_49

10 2.gif

10_2

10 1.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 1 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X11,14,12,15 X3,13,4,12 X13,3,14,2 X5,20,6,1 X7,18,8,19 X9,16,10,17 X15,10,16,11 X17,8,18,9 X19,6,20,7
Gauss code -1, 4, -3, 1, -5, 10, -6, 9, -7, 8, -2, 3, -4, 2, -8, 7, -9, 6, -10, 5
Dowker-Thistlethwaite code 4 12 20 18 16 14 2 10 8 6
Conway Notation [82]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 13, width is 6,

Braid index is 6

10 1 ML.gif 10 1 AP.gif
[{12, 9}, {8, 10}, {9, 7}, {6, 8}, {7, 5}, {4, 6}, {5, 3}, {2, 4}, {3, 1}, {11, 2}, {10, 12}, {1, 11}]

[edit Notes on presentations of 10 1]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-3]
Hyperbolic Volume 3.5262
A-Polynomial See Data:10 1/A-polynomial

[edit Notes for 10 1's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 17, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:10 1/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {8_3,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-4, 6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
5          11
3           0
1        21 1
-1       11  0
-3      11   0
-5     11    0
-7    11     0
-9   11      0
-11   1       -1
-13 11        0
-15           0
-171          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials