In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 117]] |
Out[2]= | PD[X[1, 6, 2, 7], X[5, 16, 6, 17], X[13, 1, 14, 20], X[7, 15, 8, 14],
X[19, 9, 20, 8], X[3, 11, 4, 10], X[11, 5, 12, 4], X[9, 19, 10, 18],
X[17, 13, 18, 12], X[15, 2, 16, 3]] |
In[3]:= | GaussCode[Knot[10, 117]] |
Out[3]= | GaussCode[-1, 10, -6, 7, -2, 1, -4, 5, -8, 6, -7, 9, -3, 4, -10, 2, -9,
8, -5, 3] |
In[4]:= | DTCode[Knot[10, 117]] |
Out[4]= | DTCode[6, 10, 16, 14, 18, 4, 20, 2, 12, 8] |
In[5]:= | br = BR[Knot[10, 117]] |
Out[5]= | BR[4, {1, 1, 2, 2, -3, 2, -1, 2, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 117]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 117]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 117]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 117]][t] |
Out[10]= | 2 10 24 2 3
-31 + -- - -- + -- + 24 t - 10 t + 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 117]][z] |
Out[11]= | 2 4 6
1 + 2 z + 2 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 117], Knot[11, Alternating, 23], Knot[11, Alternating, 111]} |
In[13]:= | {KnotDet[Knot[10, 117]], KnotSignature[Knot[10, 117]]} |
Out[13]= | {103, 2} |
In[14]:= | Jones[Knot[10, 117]][q] |
Out[14]= | -2 4 2 3 4 5 6 7 8
-8 - q + - + 13 q - 16 q + 18 q - 16 q + 13 q - 9 q + 4 q - q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 117]} |
In[16]:= | A2Invariant[Knot[10, 117]][q] |
Out[16]= | -6 2 -2 2 4 6 12 14 16
-1 - q + -- - q + 4 q - 3 q + 3 q + 3 q - 3 q + 3 q -
4
q
18 20 22 24
2 q - 2 q + 2 q - q |
In[17]:= | HOMFLYPT[Knot[10, 117]][a, z] |
Out[17]= | 2 2 2 4 4 4 6
-6 -4 -2 2 z 2 z 2 z 4 z 2 z 2 z z
-a + a + a - z - -- + ---- + ---- - z - -- + ---- + ---- + -- +
6 4 2 6 4 2 4
a a a a a a a
6
z
--
2
a |
In[18]:= | Kauffman[Knot[10, 117]][a, z] |
Out[18]= | 2 2 2
-6 -4 -2 3 z 5 z 3 z z 2 z 3 z 4 z
a + a - a - --- - --- - --- - - + 2 z + -- - ---- - ---- +
7 5 3 a 8 6 4
a a a a a a
2 3 3 3 3 3 4 4
2 z z 8 z 21 z 18 z 5 z 3 4 5 z 6 z
---- - -- + ---- + ----- + ----- + ---- - a z - 6 z - ---- + ---- +
2 9 7 5 3 a 8 6
a a a a a a a
4 5 5 5 5 5 6
17 z z 14 z 29 z 26 z 11 z 5 6 4 z
----- + -- - ----- - ----- - ----- - ----- + a z + 4 z + ---- -
4 9 7 5 3 a 8
a a a a a a
6 6 6 7 7 7 7 8 8
12 z 28 z 8 z 8 z 10 z 9 z 7 z 8 z 15 z
----- - ----- - ---- + ---- + ----- + ---- + ---- + ---- + ----- +
6 4 2 7 5 3 a 6 4
a a a a a a a a
8 9 9
7 z 3 z 3 z
---- + ---- + ----
2 5 3
a a a |
In[19]:= | {Vassiliev[2][Knot[10, 117]], Vassiliev[3][Knot[10, 117]]} |
Out[19]= | {2, 3} |
In[20]:= | Kh[Knot[10, 117]][q, t] |
Out[20]= | 3 1 3 1 5 3 q 3 5
8 q + 6 q + ----- + ----- + ---- + --- + --- + 9 q t + 7 q t +
5 3 3 2 2 q t t
q t q t q t
5 2 7 2 7 3 9 3 9 4 11 4
9 q t + 9 q t + 7 q t + 9 q t + 6 q t + 7 q t +
11 5 13 5 13 6 15 6 17 7
3 q t + 6 q t + q t + 3 q t + q t |
In[21]:= | ColouredJones[Knot[10, 117], 2][q] |
Out[21]= | -7 4 3 11 28 10 54 2 3
-85 + q - -- + -- + -- - -- + -- + -- - 3 q + 144 q - 144 q -
6 5 4 3 2 q
q q q q q
4 5 6 7 8 9 10
54 q + 238 q - 162 q - 116 q + 279 q - 132 q - 151 q +
11 12 13 14 15 16 17
245 q - 70 q - 142 q + 156 q - 11 q - 91 q + 62 q +
18 19 20 21 22 23
11 q - 32 q + 11 q + 4 q - 4 q + q |