7 7: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
<!-- --> |
||
Line 186: | Line 187: | ||
</table> |
</table> |
||
{| width=100% |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 21:05, 29 August 2005
|
|
![]() |
Visit 7 7's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 7 7's page at Knotilus! Visit 7 7's page at the original Knot Atlas! This is the Chinese crown loop of practical knot tying. |
Knot presentations
Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X11,14,12,1 X7,13,8,12 X13,7,14,6 |
Gauss code | -1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -5, 6, -7, 5 |
Dowker-Thistlethwaite code | 4 8 10 12 2 14 6 |
Conway Notation | [21112] |
Length is 7, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["7 7"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 21, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n28, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (-1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 7 7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-2 q^{11}-q^{10}+6 q^9-5 q^8-5 q^7+14 q^6-7 q^5-11 q^4+20 q^3-7 q^2-15 q+21-5 q^{-1} -14 q^{-2} +16 q^{-3} -2 q^{-4} -9 q^{-5} +8 q^{-6} -3 q^{-8} + q^{-9} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{24}-2 q^{23}-q^{22}+2 q^{21}+5 q^{20}-4 q^{19}-9 q^{18}+4 q^{17}+16 q^{16}-3 q^{15}-23 q^{14}-q^{13}+31 q^{12}+5 q^{11}-38 q^{10}-11 q^9+43 q^8+19 q^7-48 q^6-23 q^5+50 q^4+28 q^3-50 q^2-32 q+49+32 q^{-1} -43 q^{-2} -34 q^{-3} +40 q^{-4} +28 q^{-5} -28 q^{-6} -28 q^{-7} +23 q^{-8} +20 q^{-9} -12 q^{-10} -17 q^{-11} +9 q^{-12} +9 q^{-13} -3 q^{-14} -5 q^{-15} +3 q^{-17} - q^{-18} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{40}-2 q^{39}-q^{38}+2 q^{37}+q^{36}+6 q^{35}-8 q^{34}-7 q^{33}+2 q^{32}+4 q^{31}+25 q^{30}-14 q^{29}-23 q^{28}-10 q^{27}+3 q^{26}+62 q^{25}-7 q^{24}-38 q^{23}-39 q^{22}-16 q^{21}+106 q^{20}+17 q^{19}-39 q^{18}-76 q^{17}-54 q^{16}+141 q^{15}+50 q^{14}-24 q^{13}-109 q^{12}-98 q^{11}+162 q^{10}+79 q^9-4 q^8-129 q^7-131 q^6+167 q^5+98 q^4+16 q^3-136 q^2-149 q+156+103 q^{-1} +31 q^{-2} -125 q^{-3} -147 q^{-4} +125 q^{-5} +90 q^{-6} +44 q^{-7} -93 q^{-8} -127 q^{-9} +82 q^{-10} +61 q^{-11} +47 q^{-12} -50 q^{-13} -90 q^{-14} +40 q^{-15} +28 q^{-16} +36 q^{-17} -17 q^{-18} -47 q^{-19} +15 q^{-20} +6 q^{-21} +17 q^{-22} -2 q^{-23} -16 q^{-24} +3 q^{-25} +5 q^{-27} -3 q^{-29} + q^{-30} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-2 q^{59}-q^{58}+2 q^{57}+q^{56}+2 q^{55}+2 q^{54}-6 q^{53}-9 q^{52}+2 q^{51}+7 q^{50}+12 q^{49}+11 q^{48}-11 q^{47}-29 q^{46}-19 q^{45}+9 q^{44}+39 q^{43}+45 q^{42}+3 q^{41}-56 q^{40}-72 q^{39}-26 q^{38}+60 q^{37}+109 q^{36}+61 q^{35}-55 q^{34}-141 q^{33}-110 q^{32}+33 q^{31}+173 q^{30}+162 q^{29}-189 q^{27}-221 q^{26}-45 q^{25}+197 q^{24}+278 q^{23}+96 q^{22}-198 q^{21}-324 q^{20}-149 q^{19}+187 q^{18}+368 q^{17}+202 q^{16}-180 q^{15}-400 q^{14}-242 q^{13}+159 q^{12}+427 q^{11}+283 q^{10}-147 q^9-446 q^8-311 q^7+132 q^6+452 q^5+335 q^4-111 q^3-455 q^2-353 q+98+441 q^{-1} +354 q^{-2} -62 q^{-3} -420 q^{-4} -363 q^{-5} +49 q^{-6} +378 q^{-7} +341 q^{-8} - q^{-9} -335 q^{-10} -330 q^{-11} -11 q^{-12} +269 q^{-13} +283 q^{-14} +55 q^{-15} -211 q^{-16} -253 q^{-17} -50 q^{-18} +141 q^{-19} +190 q^{-20} +76 q^{-21} -95 q^{-22} -149 q^{-23} -55 q^{-24} +50 q^{-25} +91 q^{-26} +56 q^{-27} -24 q^{-28} -63 q^{-29} -33 q^{-30} +9 q^{-31} +32 q^{-32} +21 q^{-33} -15 q^{-35} -17 q^{-36} +2 q^{-37} +9 q^{-38} +4 q^{-39} -5 q^{-42} +3 q^{-44} - q^{-45} } |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{84}-2 q^{83}-q^{82}+2 q^{81}+q^{80}+2 q^{79}-2 q^{78}+4 q^{77}-8 q^{76}-9 q^{75}+5 q^{74}+6 q^{73}+12 q^{72}+q^{71}+15 q^{70}-24 q^{69}-35 q^{68}-8 q^{67}+8 q^{66}+37 q^{65}+27 q^{64}+67 q^{63}-35 q^{62}-88 q^{61}-70 q^{60}-36 q^{59}+47 q^{58}+79 q^{57}+200 q^{56}+22 q^{55}-116 q^{54}-179 q^{53}-170 q^{52}-41 q^{51}+90 q^{50}+398 q^{49}+192 q^{48}-23 q^{47}-249 q^{46}-364 q^{45}-271 q^{44}-38 q^{43}+560 q^{42}+435 q^{41}+224 q^{40}-184 q^{39}-517 q^{38}-591 q^{37}-318 q^{36}+595 q^{35}+650 q^{34}+561 q^{33}+16 q^{32}-556 q^{31}-899 q^{30}-672 q^{29}+511 q^{28}+775 q^{27}+886 q^{26}+275 q^{25}-498 q^{24}-1130 q^{23}-1000 q^{22}+373 q^{21}+823 q^{20}+1137 q^{19}+507 q^{18}-404 q^{17}-1281 q^{16}-1245 q^{15}+243 q^{14}+828 q^{13}+1305 q^{12}+674 q^{11}-315 q^{10}-1362 q^9-1398 q^8+133 q^7+804 q^6+1395 q^5+787 q^4-225 q^3-1371 q^2-1467 q+18+729 q^{-1} +1400 q^{-2} +862 q^{-3} -102 q^{-4} -1279 q^{-5} -1449 q^{-6} -118 q^{-7} +572 q^{-8} +1288 q^{-9} +890 q^{-10} +66 q^{-11} -1058 q^{-12} -1311 q^{-13} -249 q^{-14} +332 q^{-15} +1031 q^{-16} +825 q^{-17} +241 q^{-18} -724 q^{-19} -1034 q^{-20} -312 q^{-21} +76 q^{-22} +669 q^{-23} +640 q^{-24} +335 q^{-25} -373 q^{-26} -667 q^{-27} -264 q^{-28} -90 q^{-29} +321 q^{-30} +383 q^{-31} +299 q^{-32} -127 q^{-33} -331 q^{-34} -145 q^{-35} -122 q^{-36} +100 q^{-37} +161 q^{-38} +183 q^{-39} -22 q^{-40} -124 q^{-41} -44 q^{-42} -74 q^{-43} +14 q^{-44} +44 q^{-45} +79 q^{-46} - q^{-47} -35 q^{-48} -6 q^{-49} -27 q^{-50} +6 q^{-52} +26 q^{-53} -2 q^{-54} -9 q^{-55} +3 q^{-56} -7 q^{-57} +5 q^{-60} -3 q^{-62} + q^{-63} } |
7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{112}-2 q^{111}-q^{110}+2 q^{109}+q^{108}+2 q^{107}-2 q^{106}+2 q^{104}-8 q^{103}-6 q^{102}+4 q^{101}+6 q^{100}+14 q^{99}+2 q^{98}-2 q^{97}+5 q^{96}-27 q^{95}-28 q^{94}-9 q^{93}+8 q^{92}+49 q^{91}+37 q^{90}+25 q^{89}+25 q^{88}-58 q^{87}-93 q^{86}-81 q^{85}-53 q^{84}+76 q^{83}+123 q^{82}+140 q^{81}+149 q^{80}-30 q^{79}-165 q^{78}-250 q^{77}-275 q^{76}-44 q^{75}+154 q^{74}+325 q^{73}+461 q^{72}+217 q^{71}-77 q^{70}-391 q^{69}-661 q^{68}-446 q^{67}-101 q^{66}+368 q^{65}+854 q^{64}+741 q^{63}+372 q^{62}-239 q^{61}-984 q^{60}-1057 q^{59}-750 q^{58}-4 q^{57}+1036 q^{56}+1344 q^{55}+1174 q^{54}+369 q^{53}-956 q^{52}-1583 q^{51}-1633 q^{50}-821 q^{49}+776 q^{48}+1739 q^{47}+2061 q^{46}+1329 q^{45}-498 q^{44}-1789 q^{43}-2451 q^{42}-1857 q^{41}+147 q^{40}+1772 q^{39}+2782 q^{38}+2352 q^{37}+228 q^{36}-1684 q^{35}-3024 q^{34}-2818 q^{33}-617 q^{32}+1557 q^{31}+3231 q^{30}+3224 q^{29}+954 q^{28}-1422 q^{27}-3361 q^{26}-3554 q^{25}-1278 q^{24}+1274 q^{23}+3479 q^{22}+3840 q^{21}+1535 q^{20}-1168 q^{19}-3540 q^{18}-4050 q^{17}-1755 q^{16}+1044 q^{15}+3592 q^{14}+4235 q^{13}+1934 q^{12}-955 q^{11}-3618 q^{10}-4354 q^9-2082 q^8+849 q^7+3599 q^6+4443 q^5+2233 q^4-730 q^3-3566 q^2-4497 q-2339+596 q^{-1} +3437 q^{-2} +4481 q^{-3} +2486 q^{-4} -398 q^{-5} -3297 q^{-6} -4431 q^{-7} -2556 q^{-8} +194 q^{-9} +3011 q^{-10} +4263 q^{-11} +2666 q^{-12} +81 q^{-13} -2708 q^{-14} -4040 q^{-15} -2651 q^{-16} -333 q^{-17} +2251 q^{-18} +3675 q^{-19} +2636 q^{-20} +618 q^{-21} -1817 q^{-22} -3250 q^{-23} -2449 q^{-24} -819 q^{-25} +1279 q^{-26} +2701 q^{-27} +2262 q^{-28} +983 q^{-29} -853 q^{-30} -2162 q^{-31} -1892 q^{-32} -1008 q^{-33} +393 q^{-34} +1587 q^{-35} +1567 q^{-36} +988 q^{-37} -138 q^{-38} -1116 q^{-39} -1131 q^{-40} -838 q^{-41} -98 q^{-42} +682 q^{-43} +818 q^{-44} +686 q^{-45} +161 q^{-46} -414 q^{-47} -495 q^{-48} -478 q^{-49} -196 q^{-50} +201 q^{-51} +287 q^{-52} +334 q^{-53} +160 q^{-54} -103 q^{-55} -149 q^{-56} -195 q^{-57} -108 q^{-58} +41 q^{-59} +57 q^{-60} +108 q^{-61} +84 q^{-62} -17 q^{-63} -34 q^{-64} -60 q^{-65} -34 q^{-66} +16 q^{-67} -2 q^{-68} +23 q^{-69} +27 q^{-70} -6 q^{-72} -17 q^{-73} -7 q^{-74} +9 q^{-75} -3 q^{-76} +7 q^{-78} -5 q^{-81} +3 q^{-83} - q^{-84} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.
Back to the top. |
|