In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[7, 7]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[11, 14, 12, 1], X[7, 13, 8, 12], X[13, 7, 14, 6]] |
In[3]:= | GaussCode[Knot[7, 7]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -5, 6, -7, 5] |
In[4]:= | DTCode[Knot[7, 7]] |
Out[4]= | DTCode[4, 8, 10, 12, 2, 14, 6] |
In[5]:= | br = BR[Knot[7, 7]] |
Out[5]= | BR[4, {1, -2, 1, -2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 7} |
In[7]:= | BraidIndex[Knot[7, 7]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[7, 7]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[7, 7]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 2, 4, 1} |
In[10]:= | alex = Alexander[Knot[7, 7]][t] |
Out[10]= | -2 5 2
9 + t - - - 5 t + t
t |
In[11]:= | Conway[Knot[7, 7]][z] |
Out[11]= | 2 4
1 - z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[7, 7], Knot[11, NonAlternating, 28]} |
In[13]:= | {KnotDet[Knot[7, 7]], KnotSignature[Knot[7, 7]]} |
Out[13]= | {21, 0} |
In[14]:= | Jones[Knot[7, 7]][q] |
Out[14]= | -3 3 3 2 3 4
4 - q + -- - - - 4 q + 3 q - 2 q + q
2 q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[7, 7]} |
In[16]:= | A2Invariant[Knot[7, 7]][q] |
Out[16]= | -10 -8 -6 2 2 4 6 10 12 14
-q + q + q + -- + q - q - q - q + q + q
2
q |
In[17]:= | HOMFLYPT[Knot[7, 7]][a, z] |
Out[17]= | 2
-4 2 2 2 z 2 2 4
2 + a - -- + 2 z - ---- - a z + z
2 2
a a |
In[18]:= | Kauffman[Knot[7, 7]][a, z] |
Out[18]= | 2 2 3
-4 2 2 z 3 z 2 2 z 6 z 2 2 4 z
2 + a + -- + --- + --- + a z - 7 z - ---- - ---- - 3 a z - ---- -
2 3 a 4 2 3
a a a a a
3 4 4 5 5
8 z 3 3 3 4 z 2 z 2 4 2 z 5 z
---- - 3 a z + a z + 4 z + -- + ---- + 3 a z + ---- + ---- +
a 4 2 3 a
a a a
6
5 6 z
3 a z + z + --
2
a |
In[19]:= | {Vassiliev[2][Knot[7, 7]], Vassiliev[3][Knot[7, 7]]} |
Out[19]= | {-1, -1} |
In[20]:= | Kh[Knot[7, 7]][q, t] |
Out[20]= | 3 1 2 1 1 2 3 3 2
- + 2 q + ----- + ----- + ----- + ---- + --- + 2 q t + 2 q t + q t +
q 7 3 5 2 3 2 3 q t
q t q t q t q t
5 2 5 3 7 3 9 4
2 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[7, 7], 2][q] |
Out[21]= | -9 3 8 9 2 16 14 5 2 3
21 + q - -- + -- - -- - -- + -- - -- - - - 15 q - 7 q + 20 q -
8 6 5 4 3 2 q
q q q q q q
4 5 6 7 8 9 10 11 12
11 q - 7 q + 14 q - 5 q - 5 q + 6 q - q - 2 q + q |