In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 41]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
X[9, 20, 10, 1], X[15, 19, 16, 18], X[13, 8, 14, 9], X[17, 6, 18, 7],
X[7, 16, 8, 17], X[19, 15, 20, 14]] |
In[3]:= | GaussCode[Knot[10, 41]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 8, -9, 7, -5, 3, -4, 2, -7, 10, -6, 9, -8,
6, -10, 5] |
In[4]:= | DTCode[Knot[10, 41]] |
Out[4]= | DTCode[4, 10, 12, 16, 20, 2, 8, 18, 6, 14] |
In[5]:= | br = BR[Knot[10, 41]] |
Out[5]= | BR[5, {1, -2, 1, -2, -2, 3, -2, -4, 3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[10, 41]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 41]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 41]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 41]][t] |
Out[10]= | -3 7 17 2 3
-21 + t - -- + -- + 17 t - 7 t + t
2 t
t |
In[11]:= | Conway[Knot[10, 41]][z] |
Out[11]= | 2 4 6
1 - 2 z - z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 41], Knot[11, NonAlternating, 5]} |
In[13]:= | {KnotDet[Knot[10, 41]], KnotSignature[Knot[10, 41]]} |
Out[13]= | {71, -2} |
In[14]:= | Jones[Knot[10, 41]][q] |
Out[14]= | -7 3 6 9 11 12 11 2 3
-8 + q - -- + -- - -- + -- - -- + -- + 6 q - 3 q + q
6 5 4 3 2 q
q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 41], Knot[10, 94]} |
In[16]:= | A2Invariant[Knot[10, 41]][q] |
Out[16]= | -22 -18 2 2 -10 2 2 2 2 2 4
1 + q - q + --- - --- + q - -- + -- - -- + -- - q + 2 q -
16 14 8 6 4 2
q q q q q q
6 10
q + q |
In[17]:= | HOMFLYPT[Knot[10, 41]][a, z] |
Out[17]= | 2
-2 2 4 6 2 z 2 2 4 2 6 2
-1 + a + 2 a - 2 a + a - 4 z + -- + 4 a z - 4 a z + a z -
2
a
4 2 4 4 4 2 6
2 z + 3 a z - 2 a z + a z |
In[18]:= | Kauffman[Knot[10, 41]][a, z] |
Out[18]= | 2
-2 2 4 6 z 3 7 2 3 z
-1 - a - 2 a - 2 a - a - - - 2 a z - 2 a z + a z + 7 z + ---- +
a 2
a
3
2 2 4 2 6 2 8 2 7 z 3 3 3
9 a z + 10 a z + 4 a z - a z + ---- + 13 a z + 10 a z +
a
4
5 3 7 3 4 3 z 2 4 4 4 6 4
a z - 3 a z - 4 z - ---- - 8 a z - 14 a z - 6 a z +
2
a
5 6
8 4 9 z 5 3 5 5 5 7 5 6 z
a z - ---- - 20 a z - 18 a z - 4 a z + 3 a z - 5 z + -- -
a 2
a
7
2 6 4 6 6 6 3 z 7 3 7 5 7
7 a z + 4 a z + 5 a z + ---- + 6 a z + 8 a z + 5 a z +
a
8 2 8 4 8 9 3 9
3 z + 6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 41]], Vassiliev[3][Knot[10, 41]]} |
Out[19]= | {-2, 2} |
In[20]:= | Kh[Knot[10, 41]][q, t] |
Out[20]= | 5 7 1 2 1 4 2 5 4
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3
q q t q t q t q t q t q t q t
6 5 6 6 4 t 2 3 2
----- + ----- + ---- + ---- + --- + 4 q t + 2 q t + 4 q t +
7 2 5 2 5 3 q
q t q t q t q t
3 3 5 3 7 4
q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 41], 2][q] |
Out[21]= | -20 3 2 7 17 8 24 47 18 53
-19 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- -
19 18 17 16 15 14 13 12 11
q q q q q q q q q
86 22 85 110 12 103 104 6 97 74 2
--- + -- + -- - --- + -- + --- - --- - -- + -- - -- + 71 q - 37 q -
10 9 8 7 6 5 4 3 2 q
q q q q q q q q q
3 4 5 6 7 9 10
22 q + 37 q - 10 q - 13 q + 11 q - 3 q + q |