In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 121]] |
Out[2]= | PD[X[1, 6, 2, 7], X[7, 20, 8, 1], X[9, 19, 10, 18], X[3, 11, 4, 10],
X[17, 5, 18, 4], X[5, 12, 6, 13], X[11, 16, 12, 17],
X[19, 14, 20, 15], X[13, 8, 14, 9], X[15, 2, 16, 3]] |
In[3]:= | GaussCode[Knot[10, 121]] |
Out[3]= | GaussCode[-1, 10, -4, 5, -6, 1, -2, 9, -3, 4, -7, 6, -9, 8, -10, 7, -5,
3, -8, 2] |
In[4]:= | DTCode[Knot[10, 121]] |
Out[4]= | DTCode[6, 10, 12, 20, 18, 16, 8, 2, 4, 14] |
In[5]:= | br = BR[Knot[10, 121]] |
Out[5]= | BR[4, {-1, -1, -2, 3, -2, 1, -2, 3, -2, 3, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 121]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 121]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 121]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 121]][t] |
Out[10]= | 2 11 27 2 3
-35 + -- - -- + -- + 27 t - 11 t + 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 121]][z] |
Out[11]= | 2 4 6
1 + z + z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 121], Knot[11, Alternating, 41], Knot[11, Alternating, 183],
Knot[11, Alternating, 198], Knot[11, Alternating, 331]} |
In[13]:= | {KnotDet[Knot[10, 121]], KnotSignature[Knot[10, 121]]} |
Out[13]= | {115, -2} |
In[14]:= | Jones[Knot[10, 121]][q] |
Out[14]= | -8 4 9 14 18 20 18 15 2
-10 - q + -- - -- + -- - -- + -- - -- + -- + 5 q - q
7 6 5 4 3 2 q
q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 121]} |
In[16]:= | A2Invariant[Knot[10, 121]][q] |
Out[16]= | -24 2 2 2 4 3 3 -8 3 4 4
-1 - q + --- - --- - --- + --- - --- + --- - q + -- - -- + -- -
22 20 18 16 14 12 6 4 2
q q q q q q q q q
2 4 6
q + 3 q - q |
In[17]:= | HOMFLYPT[Knot[10, 121]][a, z] |
Out[17]= | 2 4 6 2 2 4 2 6 2 4 2 4 4 4
1 - a + 2 a - a - a z + 3 a z - a z - z + a z + 2 a z -
6 4 2 6 4 6
a z + a z + a z |
In[18]:= | Kauffman[Knot[10, 121]][a, z] |
Out[18]= | 2 4 6 3 5 7 2 2 4 2
1 + a + 2 a + a - a z - 3 a z - 2 a z - 3 a z - 7 a z -
6 2 8 2 3 3 3 5 3 7 3 9 3
3 a z + a z + 4 a z + 14 a z + 19 a z + 8 a z - a z -
5
4 2 4 4 4 6 4 8 4 z 5
5 z + 3 a z + 22 a z + 9 a z - 5 a z + -- - 15 a z -
a
3 5 5 5 7 5 9 5 6 2 6 4 6
30 a z - 28 a z - 13 a z + a z + 5 z - 13 a z - 36 a z -
6 6 8 6 7 3 7 5 7 7 7
14 a z + 4 a z + 10 a z + 11 a z + 9 a z + 8 a z +
2 8 4 8 6 8 3 9 5 9
10 a z + 19 a z + 9 a z + 4 a z + 4 a z |
In[19]:= | {Vassiliev[2][Knot[10, 121]], Vassiliev[3][Knot[10, 121]]} |
Out[19]= | {1, -2} |
In[20]:= | Kh[Knot[10, 121]][q, t] |
Out[20]= | 7 9 1 3 1 6 3 8 6
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- +
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4
q q t q t q t q t q t q t q t
10 8 10 10 8 10 4 t 2
----- + ----- + ----- + ----- + ---- + ---- + --- + 6 q t + q t +
9 3 7 3 7 2 5 2 5 3 q
q t q t q t q t q t q t
3 2 5 3
4 q t + q t |
In[21]:= | ColouredJones[Knot[10, 121], 2][q] |
Out[21]= | -23 4 4 10 32 17 59 106 7 170
-115 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- -
22 21 20 19 18 17 16 15 14
q q q q q q q q q
186 52 291 215 129 348 179 178 312 99 175
--- - --- + --- - --- - --- + --- - --- - --- + --- - -- - --- +
13 12 11 10 9 8 7 6 5 4 3
q q q q q q q q q q q
203 20 2 3 4 5 6 7
--- - -- + 82 q + 12 q - 41 q + 15 q + 5 q - 5 q + q
2 q
q |