The Coloured Jones Polynomials: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 6: Line 6:
{{Startup Note}}
{{Startup Note}}
<!--$$?ColouredJones$$-->
<!--$$?ColouredJones$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{HelpAndAbout1|n=2|s=ColouredJones}}
{{HelpAndAbout1|n=1|s=ColouredJones}}
ColouredJones[br, n][q] computes the coloured Jones polynomial of the closure of the braid br in colour n (i.e., in the (n+1)-dimensional representation) and with respect to the variable q. ColouredJones[K, n][q] does the same for knots for which a braid representative is known to this program.
ColouredJones[br, n][q] computes the coloured Jones polynomial of the closure of the braid br in colour n (i.e., in the (n+1)-dimensional representation) and with respect to the variable q. ColouredJones[K, n][q] does the same for knots for which a braid representative is known to this program.
{{HelpAndAbout2|n=3|s=ColouredJones}}
{{HelpAndAbout2|n=2|s=ColouredJones}}
The ColouredJones program was written jointly with Stavros Garoufalidis, based on formulas provided to us by Thang Le.
The ColouredJones program was written jointly with Stavros Garoufalidis, based on formulas provided to us by Thang Le.
{{HelpAndAbout3}}
{{HelpAndAbout3}}
Line 18: Line 18:


<!--$$ColouredJones[Knot[4, 1], 3][q]$$-->
<!--$$ColouredJones[Knot[4, 1], 3][q]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=4}}
{{InOut1|n=3}}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[4, 1], 3][q]</nowiki></pre>
<pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[4, 1], 3][q]</nowiki></pre>
{{InOut2|n=4}}<pre style="border: 0px; padding: 0em"><nowiki> -12 -11 -10 2 2 3 3 2 4 6 8 10 11 12
{{InOut2|n=3}}<pre style="border: 0px; padding: 0em"><nowiki> -12 -11 -10 2 2 3 3 2 4 6 8 10 11 12
3 + q - q - q + -- - -- + -- - -- - 3 q + 3 q - 2 q + 2 q - q - q + q
3 + q - q - q + -- - -- + -- - -- - 3 q + 3 q - 2 q + 2 q - q - q + q
8 6 4 2
8 6 4 2
Line 33: Line 33:


<!--$$ColouredJones[Knot[4, 1], 1][q]$$-->
<!--$$ColouredJones[Knot[4, 1], 1][q]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=5}}
{{InOut1|n=4}}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[4, 1], 1][q]</nowiki></pre>
<pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[4, 1], 1][q]</nowiki></pre>
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki> -2 1 2
{{InOut2|n=4}}<pre style="border: 0px; padding: 0em"><nowiki> -2 1 2
1 + q - - - q + q
1 + q - - - q + q
q</nowiki></pre>
q</nowiki></pre>
Line 43: Line 43:


<!--$$Jones[Knot[4, 1]][q]$$-->
<!--$$Jones[Knot[4, 1]][q]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=6}}
{{InOut1|n=5}}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[4, 1]][q]</nowiki></pre>
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[4, 1]][q]</nowiki></pre>
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki> -2 1 2
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki> -2 1 2
1 + q - - - q + q
1 + q - - - q + q
q</nowiki></pre>
q</nowiki></pre>
Line 53: Line 53:


<!--$$?CJ`Summand$$-->
<!--$$?CJ`Summand$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=7|s=CJ`Summand}}
{{Help1|n=6|s=CJ`Summand}}
CJ`Summand[br, n] returned a pair {s, vars} where s is the summand in the the big sum that makes up ColouredJones[br, n][q] and where vars is the list of variables that need to be summed over (from 0 to n) to get ColouredJones[br, n][q]. CJ`Summand[K, n] is the same for knots for which a braid representative is known to this program.
CJ`Summand[br, n] returned a pair {s, vars} where s is the summand in the the big sum that makes up ColouredJones[br, n][q] and where vars is the list of variables that need to be summed over (from 0 to n) to get ColouredJones[br, n][q]. CJ`Summand[K, n] is the same for knots for which a braid representative is known to this program.
{{Help2}}
{{Help2}}
Line 62: Line 62:


<!--$$s = CJ`Summand[Mirror[Knot[3, 1]], n]$$-->
<!--$$s = CJ`Summand[Mirror[Knot[3, 1]], n]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=8}}
{{InOut1|n=7}}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>s = CJ`Summand[Mirror[Knot[3, 1]], n]</nowiki></pre>
<pre style="color: red; border: 0px; padding: 0em"><nowiki>s = CJ`Summand[Mirror[Knot[3, 1]], n]</nowiki></pre>
{{InOut2|n=8}}<pre style="border: 0px; padding: 0em"><nowiki> 6 + 4 CJ`k[1] + (-4 + 2 CJ`k[1])/2 1 1
{{InOut2|n=7}}<pre style="border: 0px; padding: 0em"><nowiki> (3 n)/2 + n CJ`k[1] + (-n + 2 CJ`k[1])/2 1 1
{CJ`q qBinomial[0, 0, ----] qBinomial[CJ`k[1], 0, ----]
{CJ`q qBinomial[0, 0, ----] qBinomial[CJ`k[1], 0, ----]
CJ`q CJ`q
CJ`q CJ`q
1 4 1
1 n 1
qBinomial[CJ`k[1], CJ`k[1], ----] qPochhammer[CJ`q , ----, 0]
qBinomial[CJ`k[1], CJ`k[1], ----] qPochhammer[CJ`q , ----, 0]
CJ`q CJ`q
CJ`q CJ`q
4 1 4 - CJ`k[1] 1
n 1 n - CJ`k[1] 1
qPochhammer[CJ`q , ----, CJ`k[1]] qPochhammer[CJ`q , ----, 0], {CJ`k[1]}}
qPochhammer[CJ`q , ----, CJ`k[1]] qPochhammer[CJ`q , ----, 0], {CJ`k[1]}}
CJ`q CJ`q</nowiki></pre>
CJ`q CJ`q</nowiki></pre>
Line 82: Line 82:


<!--$$?qPochhammer$$-->
<!--$$?qPochhammer$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=9|s=qPochhammer}}
{{Help1|n=8|s=qPochhammer}}
qPochhammer[a, q, k] represents the q-shifted factorial of a in base q with index k. See Eric Weisstein's
qPochhammer[a, q, k] represents the q-shifted factorial of a in base q with index k. See Eric Weisstein's
http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's
http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's
Line 91: Line 91:


<!--$$?qBinomial$$-->
<!--$$?qBinomial$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=10|s=qBinomial}}
{{Help1|n=9|s=qBinomial}}
qBinomial[n, k, q] represents the q-binomial coefficient of n and k in base q. For k<0 it is 0; otherwise it is
qBinomial[n, k, q] represents the q-binomial coefficient of n and k in base q. For k<0 it is 0; otherwise it is
qPochhammer[q^(n-k+1), q, k] / qPochhammer[q, q, k].
qPochhammer[q^(n-k+1), q, k] / qPochhammer[q, q, k].
Line 122: Line 122:


<!--$$?qExpand$$-->
<!--$$?qExpand$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=11|s=qExpand}}
{{Help1|n=10|s=qExpand}}
qExpand[expr_] replaces all occurences of qPochhammer and qBinomial in expr by their definitions as products. See the documentation for qPochhammer and for qBinomial for details.
qExpand[expr_] replaces all occurences of qPochhammer and qBinomial in expr by their definitions as products. See the documentation for qPochhammer and for qBinomial for details.
{{Help2}}
{{Help2}}
Line 131: Line 131:


<!--$$qPochhammer[a, q, 6] // qExpand$$-->
<!--$$qPochhammer[a, q, 6] // qExpand$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=12}}
{{InOut1|n=11}}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>qPochhammer[a, q, 6] // qExpand</nowiki></pre>
<pre style="color: red; border: 0px; padding: 0em"><nowiki>qPochhammer[a, q, 6] // qExpand</nowiki></pre>
{{InOut2|n=12}}<pre style="border: 0px; padding: 0em"><nowiki> 2 3 4 5
{{InOut2|n=11}}<pre style="border: 0px; padding: 0em"><nowiki> 2 3 4 5
(-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q )</nowiki></pre>
(-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q )</nowiki></pre>
{{InOut3}}
{{InOut3}}
Line 140: Line 140:


<!--$$First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand$$-->
<!--$$First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=13}}
{{InOut1|n=12}}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand</nowiki></pre>
<pre style="color: red; border: 0px; padding: 0em"><nowiki>First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand</nowiki></pre>
{{InOut2|n=13}}<pre style="border: 0px; padding: 0em"><nowiki> 12 2 3
{{InOut2|n=12}}<pre style="border: 0px; padding: 0em"><nowiki> 11 2 3
CJ`q (-1 + CJ`q ) (-1 + CJ`q )</nowiki></pre>
CJ`q (-1 + CJ`q ) (-1 + CJ`q )</nowiki></pre>
{{InOut3}}
{{InOut3}}
Line 153: Line 153:


<!--$$?ColoredJones$$-->
<!--$$?ColoredJones$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=14|s=ColoredJones}}
{{Help1|n=13|s=ColoredJones}}
Type ColoredJones and see for yourself.
Type ColoredJones and see for yourself.
{{Help2}}
{{Help2}}

Revision as of 19:44, 27 August 2005


KnotTheory` can compute the coloured Jones polynomial of braid closures, using the same formulas as in [Garoufalidis Le]:

(For In[1] see Setup)

In[1]:= ?ColouredJones

ColouredJones[br, n][q] computes the coloured Jones polynomial of the closure of the braid br in colour n (i.e., in the (n+1)-dimensional representation) and with respect to the variable q. ColouredJones[K, n][q] does the same for knots for which a braid representative is known to this program.

In[2]:= ColouredJones::about

The ColouredJones program was written jointly with Stavros Garoufalidis, based on formulas provided to us by Thang Le.

Thus, for example, here's the coloured Jones polynomial of the knot 4_1 in the 4-dimensional representation of :

In[3]:=
ColouredJones[Knot[4, 1], 3][q]
Out[3]=
     -12    -11    -10   2    2    3    3       2      4      6      8    10    11    12
3 + q    - q    - q    + -- - -- + -- - -- - 3 q  + 3 q  - 2 q  + 2 q  - q   - q   + q
                          8    6    4    2
                         q    q    q    q

And here's the coloured Jones polynomial of the same knot in the two dimensional representation of ; this better be equal to the ordinary Jones polynomial of 4_1!

In[4]:=
ColouredJones[Knot[4, 1], 1][q]
Out[4]=
     -2   1        2
1 + q   - - - q + q
          q
In[5]:=
Jones[Knot[4, 1]][q]
Out[5]=
     -2   1        2
1 + q   - - - q + q
          q
In[6]:= ?CJ`Summand

CJ`Summand[br, n] returned a pair {s, vars} where s is the summand in the the big sum that makes up ColouredJones[br, n][q] and where vars is the list of variables that need to be summed over (from 0 to n) to get ColouredJones[br, n][q]. CJ`Summand[K, n] is the same for knots for which a braid representative is known to this program.

The coloured Jones polynomial of 3_1 is computed via a single summation. Indeed,

In[7]:=
s = CJ`Summand[Mirror[Knot[3, 1]], n]
Out[7]=
     (3 n)/2 + n CJ`k[1] + (-n + 2 CJ`k[1])/2                  1                           1
{CJ`q                                         qBinomial[0, 0, ----] qBinomial[CJ`k[1], 0, ----] 
                                                              CJ`q                        CJ`q
 
                                1                    n   1
   qBinomial[CJ`k[1], CJ`k[1], ----] qPochhammer[CJ`q , ----, 0] 
                               CJ`q                     CJ`q
 
                   n   1                             n - CJ`k[1]   1
   qPochhammer[CJ`q , ----, CJ`k[1]] qPochhammer[CJ`q           , ----, 0], {CJ`k[1]}}
                      CJ`q                                        CJ`q

The symbols in the above formula require a definition:

In[8]:= ?qPochhammer

qPochhammer[a, q, k] represents the q-shifted factorial of a in base q with index k. See Eric Weisstein's http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's www.risc.uni-linz.ac.at/research/combinat/risc/software/qMultiSum/

In[9]:= ?qBinomial

qBinomial[n, k, q] represents the q-binomial coefficient of n and k in base q. For k<0 it is 0; otherwise it is qPochhammer[q^(n-k+1), q, k] / qPochhammer[q, q, k].

More precisely, qPochhammer[a, q, k] is

and qBinomial[n, k, q] is

The function qExpand replaces every occurence of a qPochhammer[a, q, k] symbol or a qBinomial[n, k, q] symbol by its definition:

In[10]:= ?qExpand

qExpand[expr_] replaces all occurences of qPochhammer and qBinomial in expr by their definitions as products. See the documentation for qPochhammer and for qBinomial for details.

Hence,

In[11]:=
qPochhammer[a, q, 6] // qExpand
Out[11]=
                             2           3           4           5
(-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q )
In[12]:=
First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand
Out[12]=
    11           2            3
CJ`q   (-1 + CJ`q ) (-1 + CJ`q )

Finally,


In[13]:= ?ColoredJones

Type ColoredJones and see for yourself.

[Garoufalidis Le] ^  S. Garoufalidis and T. Q. T. Le, The Colored Jones Function is -Holonomic, Georgia Institute of Technology preprint, September 2003, arXiv:math.GT/0309214.