The Coloured Jones Polynomials: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 62: Line 62:


<!--$$s = CJ`Summand[Mirror[Knot[3, 1]], n]$$-->
<!--$$s = CJ`Summand[Mirror[Knot[3, 1]], n]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=8}}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>s = CJ`Summand[Mirror[Knot[3, 1]], n]</nowiki></pre>
{{InOut2|n=8}}<pre style="border: 0px; padding: 0em"><nowiki> 6 + 4 CJ`k[1] + (-4 + 2 CJ`k[1])/2 1 1
{CJ`q qBinomial[0, 0, ----] qBinomial[CJ`k[1], 0, ----]
CJ`q CJ`q
1 4 1
qBinomial[CJ`k[1], CJ`k[1], ----] qPochhammer[CJ`q , ----, 0]
CJ`q CJ`q
4 1 4 - CJ`k[1] 1
qPochhammer[CJ`q , ----, CJ`k[1]] qPochhammer[CJ`q , ----, 0], {CJ`k[1]}}
CJ`q CJ`q</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


Line 67: Line 82:


<!--$$?qPochhammer$$-->
<!--$$?qPochhammer$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=9|s=qPochhammer}}
qPochhammer[a, q, k] represents the q-shifted factorial of a in base q with index k. See Eric Weisstein's
http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's
www.risc.uni-linz.ac.at/research/combinat/risc/software/qMultiSum/
{{Help2}}
<!--END-->
<!--END-->


<!--$$?qBinomial$$-->
<!--$$?qBinomial$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=10|s=qBinomial}}
qBinomial[n, k, q] represents the q-binomial coefficient of n and k in base q. For k<0 it is 0; otherwise it is
qPochhammer[q^(n-k+1), q, k] / qPochhammer[q, q, k].
{{Help2}}
<!--END-->
<!--END-->


Line 96: Line 122:


<!--$$?qExpand$$-->
<!--$$?qExpand$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=11|s=qExpand}}
qExpand[expr_] replaces all occurences of qPochhammer and qBinomial in expr by their definitions as products. See the documentation for qPochhammer and for qBinomial for details.
{{Help2}}
<!--END-->
<!--END-->


Line 101: Line 131:


<!--$$qPochhammer[a, q, 6] // qExpand$$-->
<!--$$qPochhammer[a, q, 6] // qExpand$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=12}}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>qPochhammer[a, q, 6] // qExpand</nowiki></pre>
{{InOut2|n=12}}<pre style="border: 0px; padding: 0em"><nowiki> 2 3 4 5
(-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q )</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


<!--$$First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand$$-->
<!--$$First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=13}}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand</nowiki></pre>
{{InOut2|n=13}}<pre style="border: 0px; padding: 0em"><nowiki> 12 2 3
CJ`q (-1 + CJ`q ) (-1 + CJ`q )</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


Line 111: Line 153:


<!--$$?ColoredJones$$-->
<!--$$?ColoredJones$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=14|s=ColoredJones}}
Type ColoredJones and see for yourself.
{{Help2}}
<!--END-->
<!--END-->



Revision as of 17:08, 26 August 2005


KnotTheory` can compute the coloured Jones polynomial of braid closures, using the same formulas as in [Garoufalidis Le]:

(For In[1] see Setup)

In[2]:= ?ColouredJones

ColouredJones[br, n][q] computes the coloured Jones polynomial of the closure of the braid br in colour n (i.e., in the (n+1)-dimensional representation) and with respect to the variable q. ColouredJones[K, n][q] does the same for knots for which a braid representative is known to this program.

In[3]:= ColouredJones::about

The ColouredJones program was written jointly with Stavros Garoufalidis, based on formulas provided to us by Thang Le.

Thus, for example, here's the coloured Jones polynomial of the knot 4_1 in the 4-dimensional representation of :

In[4]:=
ColouredJones[Knot[4, 1], 3][q]
Out[4]=
     -12    -11    -10   2    2    3    3       2      4      6      8    10    11    12
3 + q    - q    - q    + -- - -- + -- - -- - 3 q  + 3 q  - 2 q  + 2 q  - q   - q   + q
                          8    6    4    2
                         q    q    q    q

And here's the coloured Jones polynomial of the same knot in the two dimensional representation of ; this better be equal to the ordinary Jones polynomial of 4_1!

In[5]:=
ColouredJones[Knot[4, 1], 1][q]
Out[5]=
     -2   1        2
1 + q   - - - q + q
          q
In[6]:=
Jones[Knot[4, 1]][q]
Out[6]=
     -2   1        2
1 + q   - - - q + q
          q
In[7]:= ?CJ`Summand

CJ`Summand[br, n] returned a pair {s, vars} where s is the summand in the the big sum that makes up ColouredJones[br, n][q] and where vars is the list of variables that need to be summed over (from 0 to n) to get ColouredJones[br, n][q]. CJ`Summand[K, n] is the same for knots for which a braid representative is known to this program.

The coloured Jones polynomial of 3_1 is computed via a single summation. Indeed,

In[8]:=
s = CJ`Summand[Mirror[Knot[3, 1]], n]
Out[8]=
     6 + 4 CJ`k[1] + (-4 + 2 CJ`k[1])/2                  1                           1
{CJ`q                                   qBinomial[0, 0, ----] qBinomial[CJ`k[1], 0, ----] 
                                                        CJ`q                        CJ`q
 
                                1                    4   1
   qBinomial[CJ`k[1], CJ`k[1], ----] qPochhammer[CJ`q , ----, 0] 
                               CJ`q                     CJ`q
 
                   4   1                             4 - CJ`k[1]   1
   qPochhammer[CJ`q , ----, CJ`k[1]] qPochhammer[CJ`q           , ----, 0], {CJ`k[1]}}
                      CJ`q                                        CJ`q

The symbols in the above formula require a definition:

In[9]:= ?qPochhammer

qPochhammer[a, q, k] represents the q-shifted factorial of a in base q with index k. See Eric Weisstein's http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's www.risc.uni-linz.ac.at/research/combinat/risc/software/qMultiSum/

In[10]:= ?qBinomial

qBinomial[n, k, q] represents the q-binomial coefficient of n and k in base q. For k<0 it is 0; otherwise it is qPochhammer[q^(n-k+1), q, k] / qPochhammer[q, q, k].

More precisely, qPochhammer[a, q, k] is

and qBinomial[n, k, q] is

The function qExpand replaces every occurence of a qPochhammer[a, q, k] symbol or a qBinomial[n, k, q] symbol by its definition:

In[11]:= ?qExpand

qExpand[expr_] replaces all occurences of qPochhammer and qBinomial in expr by their definitions as products. See the documentation for qPochhammer and for qBinomial for details.

Hence,

In[12]:=
qPochhammer[a, q, 6] // qExpand
Out[12]=
                             2           3           4           5
(-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q )
In[13]:=
First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand
Out[13]=
    12           2            3
CJ`q   (-1 + CJ`q ) (-1 + CJ`q )

Finally,


In[14]:= ?ColoredJones

Type ColoredJones and see for yourself.

[Garoufalidis Le] ^  S. Garoufalidis and T. Q. T. Le, The Colored Jones Function is -Holonomic, Georgia Institute of Technology preprint, September 2003, arXiv:math.GT/0309214.