The Coloured Jones Polynomials: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 62: | Line 62: | ||
<!--$$s = CJ`Summand[Mirror[Knot[3, 1]], n]$$--> |
<!--$$s = CJ`Summand[Mirror[Knot[3, 1]], n]$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n=8}} |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>s = CJ`Summand[Mirror[Knot[3, 1]], n]</nowiki></pre> |
|||
{{InOut2|n=8}}<pre style="border: 0px; padding: 0em"><nowiki> 6 + 4 CJ`k[1] + (-4 + 2 CJ`k[1])/2 1 1 |
|||
{CJ`q qBinomial[0, 0, ----] qBinomial[CJ`k[1], 0, ----] |
|||
CJ`q CJ`q |
|||
1 4 1 |
|||
qBinomial[CJ`k[1], CJ`k[1], ----] qPochhammer[CJ`q , ----, 0] |
|||
CJ`q CJ`q |
|||
4 1 4 - CJ`k[1] 1 |
|||
qPochhammer[CJ`q , ----, CJ`k[1]] qPochhammer[CJ`q , ----, 0], {CJ`k[1]}} |
|||
CJ`q CJ`q</nowiki></pre> |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
Line 67: | Line 82: | ||
<!--$$?qPochhammer$$--> |
<!--$$?qPochhammer$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{Help1|n=9|s=qPochhammer}} |
|||
qPochhammer[a, q, k] represents the q-shifted factorial of a in base q with index k. See Eric Weisstein's |
|||
http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's |
|||
www.risc.uni-linz.ac.at/research/combinat/risc/software/qMultiSum/ |
|||
{{Help2}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$?qBinomial$$--> |
<!--$$?qBinomial$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{Help1|n=10|s=qBinomial}} |
|||
qBinomial[n, k, q] represents the q-binomial coefficient of n and k in base q. For k<0 it is 0; otherwise it is |
|||
qPochhammer[q^(n-k+1), q, k] / qPochhammer[q, q, k]. |
|||
{{Help2}} |
|||
<!--END--> |
<!--END--> |
||
Line 96: | Line 122: | ||
<!--$$?qExpand$$--> |
<!--$$?qExpand$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{Help1|n=11|s=qExpand}} |
|||
qExpand[expr_] replaces all occurences of qPochhammer and qBinomial in expr by their definitions as products. See the documentation for qPochhammer and for qBinomial for details. |
|||
{{Help2}} |
|||
<!--END--> |
<!--END--> |
||
Line 101: | Line 131: | ||
<!--$$qPochhammer[a, q, 6] // qExpand$$--> |
<!--$$qPochhammer[a, q, 6] // qExpand$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n=12}} |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>qPochhammer[a, q, 6] // qExpand</nowiki></pre> |
|||
{{InOut2|n=12}}<pre style="border: 0px; padding: 0em"><nowiki> 2 3 4 5 |
|||
(-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q )</nowiki></pre> |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand$$--> |
<!--$$First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n=13}} |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand</nowiki></pre> |
|||
{{InOut2|n=13}}<pre style="border: 0px; padding: 0em"><nowiki> 12 2 3 |
|||
CJ`q (-1 + CJ`q ) (-1 + CJ`q )</nowiki></pre> |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
Line 111: | Line 153: | ||
<!--$$?ColoredJones$$--> |
<!--$$?ColoredJones$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{Help1|n=14|s=ColoredJones}} |
|||
Type ColoredJones and see for yourself. |
|||
{{Help2}} |
|||
<!--END--> |
<!--END--> |
||
Revision as of 17:08, 26 August 2005
KnotTheory`
can compute the coloured Jones polynomial of braid
closures, using the same formulas as in [Garoufalidis Le]:
(For In[1] see Setup)
In[2]:= ?ColouredJones
ColouredJones[br, n][q] computes the coloured Jones polynomial of the closure of the braid br in colour n (i.e., in the (n+1)-dimensional representation) and with respect to the variable q. ColouredJones[K, n][q] does the same for knots for which a braid representative is known to this program. |
In[3]:= ColouredJones::about
The ColouredJones program was written jointly with Stavros Garoufalidis, based on formulas provided to us by Thang Le. |
Thus, for example, here's the coloured Jones polynomial of the knot 4_1 in the 4-dimensional representation of :
In[4]:= |
ColouredJones[Knot[4, 1], 3][q] |
Out[4]= | -12 -11 -10 2 2 3 3 2 4 6 8 10 11 12 3 + q - q - q + -- - -- + -- - -- - 3 q + 3 q - 2 q + 2 q - q - q + q 8 6 4 2 q q q q |
And here's the coloured Jones polynomial of the same knot in the two dimensional representation of ; this better be equal to the ordinary Jones polynomial of 4_1!
In[5]:= |
ColouredJones[Knot[4, 1], 1][q] |
Out[5]= | -2 1 2 1 + q - - - q + q q |
In[6]:= |
Jones[Knot[4, 1]][q] |
Out[6]= | -2 1 2 1 + q - - - q + q q |
In[7]:= ?CJ`Summand
CJ`Summand[br, n] returned a pair {s, vars} where s is the summand in the the big sum that makes up ColouredJones[br, n][q] and where vars is the list of variables that need to be summed over (from 0 to n) to get ColouredJones[br, n][q]. CJ`Summand[K, n] is the same for knots for which a braid representative is known to this program. |
The coloured Jones polynomial of 3_1 is computed via a single summation. Indeed,
In[8]:= |
s = CJ`Summand[Mirror[Knot[3, 1]], n] |
Out[8]= | 6 + 4 CJ`k[1] + (-4 + 2 CJ`k[1])/2 1 1 {CJ`q qBinomial[0, 0, ----] qBinomial[CJ`k[1], 0, ----] CJ`q CJ`q 1 4 1 qBinomial[CJ`k[1], CJ`k[1], ----] qPochhammer[CJ`q , ----, 0] CJ`q CJ`q 4 1 4 - CJ`k[1] 1 qPochhammer[CJ`q , ----, CJ`k[1]] qPochhammer[CJ`q , ----, 0], {CJ`k[1]}} CJ`q CJ`q |
The symbols in the above formula require a definition:
In[9]:= ?qPochhammer
qPochhammer[a, q, k] represents the q-shifted factorial of a in base q with index k. See Eric Weisstein's http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's www.risc.uni-linz.ac.at/research/combinat/risc/software/qMultiSum/ |
In[10]:= ?qBinomial
qBinomial[n, k, q] represents the q-binomial coefficient of n and k in base q. For k<0 it is 0; otherwise it is qPochhammer[q^(n-k+1), q, k] / qPochhammer[q, q, k]. |
More precisely, qPochhammer[a, q, k]
is
and qBinomial[n, k, q]
is
The function qExpand
replaces every occurence of a qPochhammer[a, q, k]
symbol or a qBinomial[n, k, q]
symbol by its definition:
In[11]:= ?qExpand
qExpand[expr_] replaces all occurences of qPochhammer and qBinomial in expr by their definitions as products. See the documentation for qPochhammer and for qBinomial for details. |
Hence,
In[12]:= |
qPochhammer[a, q, 6] // qExpand |
Out[12]= | 2 3 4 5 (-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q ) |
In[13]:= |
First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand |
Out[13]= | 12 2 3 CJ`q (-1 + CJ`q ) (-1 + CJ`q ) |
Finally,
In[14]:= ?ColoredJones
Type ColoredJones and see for yourself. |
[Garoufalidis Le] ^ S. Garoufalidis and T. Q. T. Le, The Colored Jones Function is -Holonomic, Georgia Institute of Technology preprint, September 2003, arXiv:math.GT/0309214.