10 113: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- --> |
|||
k = 113 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,3,-7,5,-6,10,-2,8,-5,9,-3,4,-8,6,-9,7,-4/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=113|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,3,-7,5,-6,10,-2,8,-5,9,-3,4,-8,6,-9,7,-4/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = [[K11a107]], [[K11a347]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11a107]], [[K11a347]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow> </td><td>4</td></tr> |
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow> </td><td>4</td></tr> |
||
Line 73: | Line 37: | ||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{23}-5 q^{22}+5 q^{21}+16 q^{20}-41 q^{19}+8 q^{18}+83 q^{17}-108 q^{16}-27 q^{15}+196 q^{14}-159 q^{13}-102 q^{12}+295 q^{11}-161 q^{10}-174 q^9+325 q^8-116 q^7-203 q^6+269 q^5-47 q^4-171 q^3+157 q^2+4 q-94+56 q^{-1} +12 q^{-2} -29 q^{-3} +11 q^{-4} +3 q^{-5} -4 q^{-6} + q^{-7} </math> | |
|||
coloured_jones_3 = <math>-q^{45}+5 q^{44}-5 q^{43}-11 q^{42}+11 q^{41}+36 q^{40}-14 q^{39}-108 q^{38}+17 q^{37}+213 q^{36}+49 q^{35}-383 q^{34}-197 q^{33}+572 q^{32}+462 q^{31}-730 q^{30}-844 q^{29}+808 q^{28}+1301 q^{27}-767 q^{26}-1784 q^{25}+624 q^{24}+2202 q^{23}-364 q^{22}-2554 q^{21}+73 q^{20}+2767 q^{19}+255 q^{18}-2867 q^{17}-568 q^{16}+2834 q^{15}+853 q^{14}-2660 q^{13}-1113 q^{12}+2385 q^{11}+1283 q^{10}-1976 q^9-1388 q^8+1525 q^7+1347 q^6-1024 q^5-1230 q^4+617 q^3+974 q^2-268 q-715+76 q^{-1} +449 q^{-2} +23 q^{-3} -252 q^{-4} -39 q^{-5} +118 q^{-6} +33 q^{-7} -54 q^{-8} -13 q^{-9} +20 q^{-10} +4 q^{-11} -6 q^{-12} -3 q^{-13} +4 q^{-14} - q^{-15} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{23}-5 q^{22}+5 q^{21}+16 q^{20}-41 q^{19}+8 q^{18}+83 q^{17}-108 q^{16}-27 q^{15}+196 q^{14}-159 q^{13}-102 q^{12}+295 q^{11}-161 q^{10}-174 q^9+325 q^8-116 q^7-203 q^6+269 q^5-47 q^4-171 q^3+157 q^2+4 q-94+56 q^{-1} +12 q^{-2} -29 q^{-3} +11 q^{-4} +3 q^{-5} -4 q^{-6} + q^{-7} </math>|J3=<math>-q^{45}+5 q^{44}-5 q^{43}-11 q^{42}+11 q^{41}+36 q^{40}-14 q^{39}-108 q^{38}+17 q^{37}+213 q^{36}+49 q^{35}-383 q^{34}-197 q^{33}+572 q^{32}+462 q^{31}-730 q^{30}-844 q^{29}+808 q^{28}+1301 q^{27}-767 q^{26}-1784 q^{25}+624 q^{24}+2202 q^{23}-364 q^{22}-2554 q^{21}+73 q^{20}+2767 q^{19}+255 q^{18}-2867 q^{17}-568 q^{16}+2834 q^{15}+853 q^{14}-2660 q^{13}-1113 q^{12}+2385 q^{11}+1283 q^{10}-1976 q^9-1388 q^8+1525 q^7+1347 q^6-1024 q^5-1230 q^4+617 q^3+974 q^2-268 q-715+76 q^{-1} +449 q^{-2} +23 q^{-3} -252 q^{-4} -39 q^{-5} +118 q^{-6} +33 q^{-7} -54 q^{-8} -13 q^{-9} +20 q^{-10} +4 q^{-11} -6 q^{-12} -3 q^{-13} +4 q^{-14} - q^{-15} </math>|J4=<math>q^{74}-5 q^{73}+5 q^{72}+11 q^{71}-16 q^{70}-6 q^{69}-30 q^{68}+54 q^{67}+103 q^{66}-82 q^{65}-112 q^{64}-251 q^{63}+212 q^{62}+645 q^{61}+48 q^{60}-469 q^{59}-1402 q^{58}-26 q^{57}+2075 q^{56}+1563 q^{55}-206 q^{54}-4248 q^{53}-2542 q^{52}+3229 q^{51}+5529 q^{50}+3239 q^{49}-7254 q^{48}-8631 q^{47}+897 q^{46}+10069 q^{45}+11259 q^{44}-6767 q^{43}-15986 q^{42}-6381 q^{41}+11329 q^{40}+21118 q^{39}-1369 q^{38}-20470 q^{37}-15829 q^{36}+7975 q^{35}+28515 q^{34}+6390 q^{33}-20505 q^{32}-23517 q^{31}+2084 q^{30}+31572 q^{29}+13360 q^{28}-17291 q^{27}-27794 q^{26}-4111 q^{25}+30657 q^{24}+18367 q^{23}-11987 q^{22}-28602 q^{21}-9929 q^{20}+26018 q^{19}+21092 q^{18}-4872 q^{17}-25517 q^{16}-14666 q^{15}+17731 q^{14}+20332 q^{13}+2697 q^{12}-18207 q^{11}-16185 q^{10}+7772 q^9+15153 q^8+7485 q^7-8838 q^6-12951 q^5+302 q^4+7617 q^3+7305 q^2-1746 q-6996-2153 q^{-1} +1895 q^{-2} +4049 q^{-3} +829 q^{-4} -2326 q^{-5} -1348 q^{-6} -201 q^{-7} +1302 q^{-8} +662 q^{-9} -441 q^{-10} -330 q^{-11} -268 q^{-12} +248 q^{-13} +179 q^{-14} -69 q^{-15} -17 q^{-16} -70 q^{-17} +37 q^{-18} +26 q^{-19} -19 q^{-20} +5 q^{-21} -9 q^{-22} +6 q^{-23} +3 q^{-24} -4 q^{-25} + q^{-26} </math>|J5=<math>-q^{110}+5 q^{109}-5 q^{108}-11 q^{107}+16 q^{106}+11 q^{105}-10 q^{103}-49 q^{102}-53 q^{101}+77 q^{100}+193 q^{99}+105 q^{98}-147 q^{97}-470 q^{96}-463 q^{95}+146 q^{94}+1142 q^{93}+1425 q^{92}+120 q^{91}-2076 q^{90}-3380 q^{89}-1743 q^{88}+2924 q^{87}+7090 q^{86}+5594 q^{85}-2529 q^{84}-11815 q^{83}-13351 q^{82}-1683 q^{81}+16722 q^{80}+25488 q^{79}+11986 q^{78}-18233 q^{77}-40936 q^{76}-31019 q^{75}+12436 q^{74}+56673 q^{73}+58646 q^{72}+4708 q^{71}-67378 q^{70}-92461 q^{69}-35372 q^{68}+67642 q^{67}+127438 q^{66}+78290 q^{65}-53411 q^{64}-156999 q^{63}-129444 q^{62}+23740 q^{61}+175703 q^{60}+182272 q^{59}+18982 q^{58}-180144 q^{57}-230663 q^{56}-69435 q^{55}+170524 q^{54}+269064 q^{53}+122008 q^{52}-149290 q^{51}-295846 q^{50}-170921 q^{49}+120958 q^{48}+310323 q^{47}+213088 q^{46}-89127 q^{45}-315143 q^{44}-247013 q^{43}+57310 q^{42}+312043 q^{41}+273152 q^{40}-26342 q^{39}-303206 q^{38}-292904 q^{37}-3679 q^{36}+289392 q^{35}+307134 q^{34}+33780 q^{33}-269756 q^{32}-316379 q^{31}-65076 q^{30}+243562 q^{29}+319348 q^{28}+97142 q^{27}-208866 q^{26}-314188 q^{25}-128881 q^{24}+166215 q^{23}+298125 q^{22}+156560 q^{21}-116345 q^{20}-269958 q^{19}-176317 q^{18}+64083 q^{17}+229332 q^{16}+183631 q^{15}-13836 q^{14}-179900 q^{13}-176795 q^{12}-26835 q^{11}+126211 q^{10}+155697 q^9+54716 q^8-75683 q^7-124947 q^6-66442 q^5+33970 q^4+89488 q^3+64870 q^2-5068 q-56439-53407 q^{-1} -10729 q^{-2} +29891 q^{-3} +38155 q^{-4} +15804 q^{-5} -12198 q^{-6} -23416 q^{-7} -14367 q^{-8} +2521 q^{-9} +12382 q^{-10} +10079 q^{-11} +1302 q^{-12} -5328 q^{-13} -5903 q^{-14} -2040 q^{-15} +1877 q^{-16} +2885 q^{-17} +1431 q^{-18} -405 q^{-19} -1165 q^{-20} -799 q^{-21} -6 q^{-22} +435 q^{-23} +328 q^{-24} +26 q^{-25} -111 q^{-26} -98 q^{-27} -46 q^{-28} +40 q^{-29} +47 q^{-30} -15 q^{-31} -9 q^{-32} +6 q^{-33} -6 q^{-34} +9 q^{-36} -6 q^{-37} -3 q^{-38} +4 q^{-39} - q^{-40} </math>|J6=Not Available|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{74}-5 q^{73}+5 q^{72}+11 q^{71}-16 q^{70}-6 q^{69}-30 q^{68}+54 q^{67}+103 q^{66}-82 q^{65}-112 q^{64}-251 q^{63}+212 q^{62}+645 q^{61}+48 q^{60}-469 q^{59}-1402 q^{58}-26 q^{57}+2075 q^{56}+1563 q^{55}-206 q^{54}-4248 q^{53}-2542 q^{52}+3229 q^{51}+5529 q^{50}+3239 q^{49}-7254 q^{48}-8631 q^{47}+897 q^{46}+10069 q^{45}+11259 q^{44}-6767 q^{43}-15986 q^{42}-6381 q^{41}+11329 q^{40}+21118 q^{39}-1369 q^{38}-20470 q^{37}-15829 q^{36}+7975 q^{35}+28515 q^{34}+6390 q^{33}-20505 q^{32}-23517 q^{31}+2084 q^{30}+31572 q^{29}+13360 q^{28}-17291 q^{27}-27794 q^{26}-4111 q^{25}+30657 q^{24}+18367 q^{23}-11987 q^{22}-28602 q^{21}-9929 q^{20}+26018 q^{19}+21092 q^{18}-4872 q^{17}-25517 q^{16}-14666 q^{15}+17731 q^{14}+20332 q^{13}+2697 q^{12}-18207 q^{11}-16185 q^{10}+7772 q^9+15153 q^8+7485 q^7-8838 q^6-12951 q^5+302 q^4+7617 q^3+7305 q^2-1746 q-6996-2153 q^{-1} +1895 q^{-2} +4049 q^{-3} +829 q^{-4} -2326 q^{-5} -1348 q^{-6} -201 q^{-7} +1302 q^{-8} +662 q^{-9} -441 q^{-10} -330 q^{-11} -268 q^{-12} +248 q^{-13} +179 q^{-14} -69 q^{-15} -17 q^{-16} -70 q^{-17} +37 q^{-18} +26 q^{-19} -19 q^{-20} +5 q^{-21} -9 q^{-22} +6 q^{-23} +3 q^{-24} -4 q^{-25} + q^{-26} </math> | |
|||
coloured_jones_5 = <math>-q^{110}+5 q^{109}-5 q^{108}-11 q^{107}+16 q^{106}+11 q^{105}-10 q^{103}-49 q^{102}-53 q^{101}+77 q^{100}+193 q^{99}+105 q^{98}-147 q^{97}-470 q^{96}-463 q^{95}+146 q^{94}+1142 q^{93}+1425 q^{92}+120 q^{91}-2076 q^{90}-3380 q^{89}-1743 q^{88}+2924 q^{87}+7090 q^{86}+5594 q^{85}-2529 q^{84}-11815 q^{83}-13351 q^{82}-1683 q^{81}+16722 q^{80}+25488 q^{79}+11986 q^{78}-18233 q^{77}-40936 q^{76}-31019 q^{75}+12436 q^{74}+56673 q^{73}+58646 q^{72}+4708 q^{71}-67378 q^{70}-92461 q^{69}-35372 q^{68}+67642 q^{67}+127438 q^{66}+78290 q^{65}-53411 q^{64}-156999 q^{63}-129444 q^{62}+23740 q^{61}+175703 q^{60}+182272 q^{59}+18982 q^{58}-180144 q^{57}-230663 q^{56}-69435 q^{55}+170524 q^{54}+269064 q^{53}+122008 q^{52}-149290 q^{51}-295846 q^{50}-170921 q^{49}+120958 q^{48}+310323 q^{47}+213088 q^{46}-89127 q^{45}-315143 q^{44}-247013 q^{43}+57310 q^{42}+312043 q^{41}+273152 q^{40}-26342 q^{39}-303206 q^{38}-292904 q^{37}-3679 q^{36}+289392 q^{35}+307134 q^{34}+33780 q^{33}-269756 q^{32}-316379 q^{31}-65076 q^{30}+243562 q^{29}+319348 q^{28}+97142 q^{27}-208866 q^{26}-314188 q^{25}-128881 q^{24}+166215 q^{23}+298125 q^{22}+156560 q^{21}-116345 q^{20}-269958 q^{19}-176317 q^{18}+64083 q^{17}+229332 q^{16}+183631 q^{15}-13836 q^{14}-179900 q^{13}-176795 q^{12}-26835 q^{11}+126211 q^{10}+155697 q^9+54716 q^8-75683 q^7-124947 q^6-66442 q^5+33970 q^4+89488 q^3+64870 q^2-5068 q-56439-53407 q^{-1} -10729 q^{-2} +29891 q^{-3} +38155 q^{-4} +15804 q^{-5} -12198 q^{-6} -23416 q^{-7} -14367 q^{-8} +2521 q^{-9} +12382 q^{-10} +10079 q^{-11} +1302 q^{-12} -5328 q^{-13} -5903 q^{-14} -2040 q^{-15} +1877 q^{-16} +2885 q^{-17} +1431 q^{-18} -405 q^{-19} -1165 q^{-20} -799 q^{-21} -6 q^{-22} +435 q^{-23} +328 q^{-24} +26 q^{-25} -111 q^{-26} -98 q^{-27} -46 q^{-28} +40 q^{-29} +47 q^{-30} -15 q^{-31} -9 q^{-32} +6 q^{-33} -6 q^{-34} +9 q^{-36} -6 q^{-37} -3 q^{-38} +4 q^{-39} - q^{-40} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 113]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 113]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[20, 16, 1, 15], |
|||
X[12, 7, 13, 8], X[8, 18, 9, 17], X[6, 19, 7, 20], X[16, 12, 17, 11], |
X[12, 7, 13, 8], X[8, 18, 9, 17], X[6, 19, 7, 20], X[16, 12, 17, 11], |
||
X[18, 13, 19, 14], X[2, 10, 3, 9]]</nowiki></pre></td></tr> |
X[18, 13, 19, 14], X[2, 10, 3, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 113]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 3, -7, 5, -6, 10, -2, 8, -5, 9, -3, 4, -8, 6, |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 3, -7, 5, -6, 10, -2, 8, -5, 9, -3, 4, -8, 6, |
|||
-9, 7, -4]</nowiki></pre></td></tr> |
-9, 7, -4]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 113]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 14, 12, 2, 16, 18, 20, 8, 6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 113]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, 2, -3, 2, -1, 2, -3, 2, -3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 113]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 113]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_113_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 113]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 113]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 11 26 2 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 113]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_113_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 113]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 113]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 11 26 2 3 |
|||
-33 + -- - -- + -- + 26 t - 11 t + 2 t |
-33 + -- - -- + -- + 26 t - 11 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 113]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 |
|||
1 + z + 2 z</nowiki></pre></td></tr> |
1 + z + 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 113], Knot[11, Alternating, 107], Knot[11, Alternating, 347]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 113]], KnotSignature[Knot[10, 113]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{111, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 113]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 4 2 3 4 5 6 7 8 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 113]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 4 2 3 4 5 6 7 8 |
|||
-8 - q + - + 14 q - 17 q + 19 q - 18 q + 14 q - 10 q + 5 q - q |
-8 - q + - + 14 q - 17 q + 19 q - 18 q + 14 q - 10 q + 5 q - q |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 113]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 113]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 -2 2 4 6 10 12 14 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 113]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 -2 2 4 6 10 12 14 |
|||
-1 - q + -- - q + 5 q - 2 q + 4 q - 2 q + q - 5 q + |
-1 - q + -- - q + 5 q - 2 q + 4 q - 2 q + q - 5 q + |
||
4 |
4 |
||
Line 147: | Line 98: | ||
16 18 20 22 24 |
16 18 20 22 24 |
||
3 q - q - q + 3 q - q</nowiki></pre></td></tr> |
3 q - q - q + 3 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 113]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 4 6 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 4 6 6 |
|||
-6 3 3 2 2 z 3 z 4 z z 2 z z z |
-6 3 3 2 2 z 3 z 4 z z 2 z z z |
||
a - -- + -- - z - ---- + ---- - z - -- + -- + ---- + -- + -- |
a - -- + -- - z - ---- + ---- - z - -- + -- + ---- + -- + -- |
||
4 2 4 2 6 4 2 4 2 |
4 2 4 2 6 4 2 4 2 |
||
a a a a a a a a a</nowiki></pre></td></tr> |
a a a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 113]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 3 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 3 |
|||
-6 3 3 z z z z 2 3 z 8 z 8 z 5 z |
-6 3 3 z z z z 2 3 z 8 z 8 z 5 z |
||
-a - -- - -- + -- + -- - -- - - + 3 z + ---- + ---- + ---- + ---- + |
-a - -- - -- + -- + -- - -- - - + 3 z + ---- + ---- + ---- + ---- + |
||
Line 185: | Line 134: | ||
3 |
3 |
||
a</nowiki></pre></td></tr> |
a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 113]], Vassiliev[3][Knot[10, 113]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 113]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 3 1 5 3 q 3 5 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 113]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 3 1 5 3 q 3 5 |
|||
9 q + 6 q + ----- + ----- + ---- + --- + --- + 9 q t + 8 q t + |
9 q + 6 q + ----- + ----- + ---- + --- + --- + 9 q t + 8 q t + |
||
5 3 3 2 2 q t t |
5 3 3 2 2 q t t |
||
Line 200: | Line 147: | ||
11 5 13 5 13 6 15 6 17 7 |
11 5 13 5 13 6 15 6 17 7 |
||
4 q t + 6 q t + q t + 4 q t + q t</nowiki></pre></td></tr> |
4 q t + 6 q t + q t + 4 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 113], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 4 3 11 29 12 56 2 3 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 4 3 11 29 12 56 2 3 |
|||
-94 + q - -- + -- + -- - -- + -- + -- + 4 q + 157 q - 171 q - |
-94 + q - -- + -- + -- - -- + -- + -- + 4 q + 157 q - 171 q - |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
Line 215: | Line 161: | ||
18 19 20 21 22 23 |
18 19 20 21 22 23 |
||
8 q - 41 q + 16 q + 5 q - 5 q + q</nowiki></pre></td></tr> |
8 q - 41 q + 16 q + 5 q - 5 q + q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:33, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 113's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,4,11,3 X14,6,15,5 X20,16,1,15 X12,7,13,8 X8,18,9,17 X6,19,7,20 X16,12,17,11 X18,13,19,14 X2,10,3,9 |
Gauss code | 1, -10, 2, -1, 3, -7, 5, -6, 10, -2, 8, -5, 9, -3, 4, -8, 6, -9, 7, -4 |
Dowker-Thistlethwaite code | 4 10 14 12 2 16 18 20 8 6 |
Conway Notation | [8*21] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{3, 11}, {2, 5}, {1, 3}, {12, 7}, {10, 6}, {11, 8}, {7, 4}, {5, 9}, {8, 2}, {4, 10}, {9, 12}, {6, 1}] |
[edit Notes on presentations of 10 113]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 113"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,4,11,3 X14,6,15,5 X20,16,1,15 X12,7,13,8 X8,18,9,17 X6,19,7,20 X16,12,17,11 X18,13,19,14 X2,10,3,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, 3, -7, 5, -6, 10, -2, 8, -5, 9, -3, 4, -8, 6, -9, 7, -4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 14 12 2 16 18 20 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[8*21] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 11}, {2, 5}, {1, 3}, {12, 7}, {10, 6}, {11, 8}, {7, 4}, {5, 9}, {8, 2}, {4, 10}, {9, 12}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 113"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 111, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a107, K11a347,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 113"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a107, K11a347,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (0, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 113. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|