K11a107
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X14,5,15,6 X16,7,17,8 X2,10,3,9 X20,12,21,11 X18,13,19,14 X8,15,9,16 X6,17,7,18 X22,20,1,19 X12,22,13,21 |
| Gauss code | 1, -5, 2, -1, 3, -9, 4, -8, 5, -2, 6, -11, 7, -3, 8, -4, 9, -7, 10, -6, 11, -10 |
| Dowker-Thistlethwaite code | 4 10 14 16 2 20 18 8 6 22 12 |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 2 t^3-11 t^2+26 t-33+26 t^{-1} -11 t^{-2} +2 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ 2 z^6+z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \left\{2,t^2+t+1\right\} }[/math] |
| Determinant and Signature | { 111, 2 } |
| Jones polynomial | [math]\displaystyle{ q^7-4 q^6+8 q^5-12 q^4+16 q^3-18 q^2+17 q-14+11 q^{-1} -6 q^{-2} +3 q^{-3} - q^{-4} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^6 a^{-2} +z^6-a^2 z^4+z^4 a^{-2} -2 z^4 a^{-4} +3 z^4-2 a^2 z^2-2 z^2 a^{-2} -2 z^2 a^{-4} +z^2 a^{-6} +5 z^2-a^2-3 a^{-2} + a^{-4} +4 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-2} +z^{10}+3 a z^9+7 z^9 a^{-1} +4 z^9 a^{-3} +3 a^2 z^8+13 z^8 a^{-2} +8 z^8 a^{-4} +8 z^8+a^3 z^7-6 a z^7-8 z^7 a^{-1} +9 z^7 a^{-3} +10 z^7 a^{-5} -12 a^2 z^6-35 z^6 a^{-2} -4 z^6 a^{-4} +8 z^6 a^{-6} -35 z^6-4 a^3 z^5-6 a z^5-21 z^5 a^{-1} -35 z^5 a^{-3} -12 z^5 a^{-5} +4 z^5 a^{-7} +16 a^2 z^4+24 z^4 a^{-2} -9 z^4 a^{-4} -8 z^4 a^{-6} +z^4 a^{-8} +40 z^4+5 a^3 z^3+16 a z^3+29 z^3 a^{-1} +26 z^3 a^{-3} +6 z^3 a^{-5} -2 z^3 a^{-7} -8 a^2 z^2-10 z^2 a^{-2} +3 z^2 a^{-4} +3 z^2 a^{-6} -18 z^2-2 a^3 z-6 a z-8 z a^{-1} -6 z a^{-3} -2 z a^{-5} +a^2+3 a^{-2} + a^{-4} +4 }[/math] |
| The A2 invariant | Data:K11a107/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a107/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a107"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 2 t^3-11 t^2+26 t-33+26 t^{-1} -11 t^{-2} +2 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 2 z^6+z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \left\{2,t^2+t+1\right\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 111, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^7-4 q^6+8 q^5-12 q^4+16 q^3-18 q^2+17 q-14+11 q^{-1} -6 q^{-2} +3 q^{-3} - q^{-4} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^6 a^{-2} +z^6-a^2 z^4+z^4 a^{-2} -2 z^4 a^{-4} +3 z^4-2 a^2 z^2-2 z^2 a^{-2} -2 z^2 a^{-4} +z^2 a^{-6} +5 z^2-a^2-3 a^{-2} + a^{-4} +4 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-2} +z^{10}+3 a z^9+7 z^9 a^{-1} +4 z^9 a^{-3} +3 a^2 z^8+13 z^8 a^{-2} +8 z^8 a^{-4} +8 z^8+a^3 z^7-6 a z^7-8 z^7 a^{-1} +9 z^7 a^{-3} +10 z^7 a^{-5} -12 a^2 z^6-35 z^6 a^{-2} -4 z^6 a^{-4} +8 z^6 a^{-6} -35 z^6-4 a^3 z^5-6 a z^5-21 z^5 a^{-1} -35 z^5 a^{-3} -12 z^5 a^{-5} +4 z^5 a^{-7} +16 a^2 z^4+24 z^4 a^{-2} -9 z^4 a^{-4} -8 z^4 a^{-6} +z^4 a^{-8} +40 z^4+5 a^3 z^3+16 a z^3+29 z^3 a^{-1} +26 z^3 a^{-3} +6 z^3 a^{-5} -2 z^3 a^{-7} -8 a^2 z^2-10 z^2 a^{-2} +3 z^2 a^{-4} +3 z^2 a^{-6} -18 z^2-2 a^3 z-6 a z-8 z a^{-1} -6 z a^{-3} -2 z a^{-5} +a^2+3 a^{-2} + a^{-4} +4 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_113, K11a347,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a107"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ 2 t^3-11 t^2+26 t-33+26 t^{-1} -11 t^{-2} +2 t^{-3} }[/math], [math]\displaystyle{ q^7-4 q^6+8 q^5-12 q^4+16 q^3-18 q^2+17 q-14+11 q^{-1} -6 q^{-2} +3 q^{-3} - q^{-4} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_113, K11a347,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (0, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a107. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



