10 32: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- --> |
|||
k = 32 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-3,6,-5,8,-7,9,-10,2,-9,3,-4,5,-8,7,-6,4/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=32|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-3,6,-5,8,-7,9,-10,2,-9,3,-4,5,-8,7,-6,4/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
||
Line 73: | Line 37: | ||
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{12}-3 q^{11}+2 q^{10}+7 q^9-17 q^8+8 q^7+25 q^6-47 q^5+15 q^4+55 q^3-83 q^2+16 q+86-103 q^{-1} +6 q^{-2} +101 q^{-3} -95 q^{-4} -11 q^{-5} +93 q^{-6} -66 q^{-7} -22 q^{-8} +65 q^{-9} -32 q^{-10} -21 q^{-11} +33 q^{-12} -8 q^{-13} -12 q^{-14} +10 q^{-15} -3 q^{-17} + q^{-18} </math> | |
|||
coloured_jones_3 = <math>q^{24}-3 q^{23}+2 q^{22}+3 q^{21}-q^{20}-11 q^{19}+6 q^{18}+21 q^{17}-12 q^{16}-39 q^{15}+22 q^{14}+65 q^{13}-32 q^{12}-107 q^{11}+49 q^{10}+158 q^9-62 q^8-224 q^7+70 q^6+299 q^5-68 q^4-374 q^3+54 q^2+437 q-22-489 q^{-1} -11 q^{-2} +504 q^{-3} +67 q^{-4} -511 q^{-5} -104 q^{-6} +476 q^{-7} +158 q^{-8} -439 q^{-9} -187 q^{-10} +370 q^{-11} +222 q^{-12} -308 q^{-13} -231 q^{-14} +231 q^{-15} +230 q^{-16} -157 q^{-17} -215 q^{-18} +94 q^{-19} +181 q^{-20} -37 q^{-21} -144 q^{-22} +3 q^{-23} +99 q^{-24} +18 q^{-25} -61 q^{-26} -23 q^{-27} +32 q^{-28} +19 q^{-29} -14 q^{-30} -12 q^{-31} +5 q^{-32} +5 q^{-33} -3 q^{-35} + q^{-36} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{12}-3 q^{11}+2 q^{10}+7 q^9-17 q^8+8 q^7+25 q^6-47 q^5+15 q^4+55 q^3-83 q^2+16 q+86-103 q^{-1} +6 q^{-2} +101 q^{-3} -95 q^{-4} -11 q^{-5} +93 q^{-6} -66 q^{-7} -22 q^{-8} +65 q^{-9} -32 q^{-10} -21 q^{-11} +33 q^{-12} -8 q^{-13} -12 q^{-14} +10 q^{-15} -3 q^{-17} + q^{-18} </math>|J3=<math>q^{24}-3 q^{23}+2 q^{22}+3 q^{21}-q^{20}-11 q^{19}+6 q^{18}+21 q^{17}-12 q^{16}-39 q^{15}+22 q^{14}+65 q^{13}-32 q^{12}-107 q^{11}+49 q^{10}+158 q^9-62 q^8-224 q^7+70 q^6+299 q^5-68 q^4-374 q^3+54 q^2+437 q-22-489 q^{-1} -11 q^{-2} +504 q^{-3} +67 q^{-4} -511 q^{-5} -104 q^{-6} +476 q^{-7} +158 q^{-8} -439 q^{-9} -187 q^{-10} +370 q^{-11} +222 q^{-12} -308 q^{-13} -231 q^{-14} +231 q^{-15} +230 q^{-16} -157 q^{-17} -215 q^{-18} +94 q^{-19} +181 q^{-20} -37 q^{-21} -144 q^{-22} +3 q^{-23} +99 q^{-24} +18 q^{-25} -61 q^{-26} -23 q^{-27} +32 q^{-28} +19 q^{-29} -14 q^{-30} -12 q^{-31} +5 q^{-32} +5 q^{-33} -3 q^{-35} + q^{-36} </math>|J4=<math>q^{40}-3 q^{39}+2 q^{38}+3 q^{37}-5 q^{36}+5 q^{35}-13 q^{34}+12 q^{33}+15 q^{32}-26 q^{31}+13 q^{30}-39 q^{29}+46 q^{28}+51 q^{27}-87 q^{26}+12 q^{25}-84 q^{24}+141 q^{23}+133 q^{22}-224 q^{21}-43 q^{20}-159 q^{19}+367 q^{18}+330 q^{17}-465 q^{16}-261 q^{15}-323 q^{14}+776 q^{13}+754 q^{12}-726 q^{11}-700 q^{10}-707 q^9+1248 q^8+1438 q^7-800 q^6-1217 q^5-1341 q^4+1523 q^3+2168 q^2-569 q-1519-2029 q^{-1} +1438 q^{-2} +2626 q^{-3} -138 q^{-4} -1448 q^{-5} -2503 q^{-6} +1061 q^{-7} +2661 q^{-8} +313 q^{-9} -1070 q^{-10} -2661 q^{-11} +544 q^{-12} +2346 q^{-13} +687 q^{-14} -536 q^{-15} -2525 q^{-16} -9 q^{-17} +1791 q^{-18} +945 q^{-19} +51 q^{-20} -2134 q^{-21} -495 q^{-22} +1091 q^{-23} +1000 q^{-24} +561 q^{-25} -1508 q^{-26} -748 q^{-27} +376 q^{-28} +775 q^{-29} +825 q^{-30} -786 q^{-31} -666 q^{-32} -125 q^{-33} +369 q^{-34} +742 q^{-35} -223 q^{-36} -358 q^{-37} -274 q^{-38} +32 q^{-39} +439 q^{-40} +23 q^{-41} -83 q^{-42} -178 q^{-43} -88 q^{-44} +165 q^{-45} +44 q^{-46} +22 q^{-47} -58 q^{-48} -61 q^{-49} +38 q^{-50} +11 q^{-51} +20 q^{-52} -7 q^{-53} -19 q^{-54} +5 q^{-55} +5 q^{-57} -3 q^{-59} + q^{-60} </math>|J5=<math>q^{60}-3 q^{59}+2 q^{58}+3 q^{57}-5 q^{56}+q^{55}+3 q^{54}-7 q^{53}+6 q^{52}+11 q^{51}-15 q^{50}-8 q^{49}+9 q^{48}-2 q^{47}+17 q^{46}+12 q^{45}-34 q^{44}-33 q^{43}+19 q^{42}+52 q^{41}+43 q^{40}-26 q^{39}-122 q^{38}-88 q^{37}+94 q^{36}+243 q^{35}+157 q^{34}-187 q^{33}-475 q^{32}-308 q^{31}+327 q^{30}+856 q^{29}+614 q^{28}-469 q^{27}-1471 q^{26}-1147 q^{25}+587 q^{24}+2264 q^{23}+2023 q^{22}-517 q^{21}-3280 q^{20}-3284 q^{19}+208 q^{18}+4337 q^{17}+4905 q^{16}+521 q^{15}-5306 q^{14}-6822 q^{13}-1668 q^{12}+6010 q^{11}+8808 q^{10}+3212 q^9-6282 q^8-10665 q^7-5016 q^6+6067 q^5+12178 q^4+6893 q^3-5436 q^2-13168 q-8582+4379 q^{-1} +13626 q^{-2} +10042 q^{-3} -3240 q^{-4} -13532 q^{-5} -10991 q^{-6} +1901 q^{-7} +13001 q^{-8} +11683 q^{-9} -736 q^{-10} -12149 q^{-11} -11847 q^{-12} -529 q^{-13} +11049 q^{-14} +11898 q^{-15} +1564 q^{-16} -9750 q^{-17} -11570 q^{-18} -2728 q^{-19} +8303 q^{-20} +11195 q^{-21} +3685 q^{-22} -6674 q^{-23} -10464 q^{-24} -4740 q^{-25} +4915 q^{-26} +9620 q^{-27} +5520 q^{-28} -3062 q^{-29} -8373 q^{-30} -6148 q^{-31} +1175 q^{-32} +6950 q^{-33} +6365 q^{-34} +526 q^{-35} -5229 q^{-36} -6153 q^{-37} -1972 q^{-38} +3432 q^{-39} +5526 q^{-40} +2932 q^{-41} -1725 q^{-42} -4462 q^{-43} -3394 q^{-44} +228 q^{-45} +3251 q^{-46} +3324 q^{-47} +807 q^{-48} -1962 q^{-49} -2839 q^{-50} -1420 q^{-51} +880 q^{-52} +2125 q^{-53} +1555 q^{-54} -74 q^{-55} -1357 q^{-56} -1384 q^{-57} -375 q^{-58} +695 q^{-59} +1030 q^{-60} +540 q^{-61} -231 q^{-62} -658 q^{-63} -493 q^{-64} -24 q^{-65} +337 q^{-66} +363 q^{-67} +128 q^{-68} -136 q^{-69} -229 q^{-70} -117 q^{-71} +31 q^{-72} +103 q^{-73} +93 q^{-74} +16 q^{-75} -54 q^{-76} -50 q^{-77} -9 q^{-78} +8 q^{-79} +21 q^{-80} +20 q^{-81} -7 q^{-82} -12 q^{-83} -2 q^{-84} +5 q^{-87} -3 q^{-89} + q^{-90} </math>|J6=<math>q^{84}-3 q^{83}+2 q^{82}+3 q^{81}-5 q^{80}+q^{79}-q^{78}+9 q^{77}-13 q^{76}+2 q^{75}+22 q^{74}-26 q^{73}-q^{72}+q^{71}+31 q^{70}-34 q^{69}-7 q^{68}+68 q^{67}-74 q^{66}-7 q^{65}+22 q^{64}+94 q^{63}-97 q^{62}-63 q^{61}+137 q^{60}-170 q^{59}+39 q^{58}+144 q^{57}+276 q^{56}-255 q^{55}-344 q^{54}+75 q^{53}-406 q^{52}+292 q^{51}+731 q^{50}+933 q^{49}-479 q^{48}-1257 q^{47}-794 q^{46}-1333 q^{45}+833 q^{44}+2600 q^{43}+3271 q^{42}-43 q^{41}-3161 q^{40}-3921 q^{39}-4755 q^{38}+780 q^{37}+6538 q^{36}+9562 q^{35}+3504 q^{34}-5075 q^{33}-10652 q^{32}-13770 q^{31}-2951 q^{30}+11446 q^{29}+21583 q^{28}+14012 q^{27}-3221 q^{26}-19617 q^{25}-30304 q^{24}-14793 q^{23}+12727 q^{22}+37220 q^{21}+33255 q^{20}+7408 q^{19}-25188 q^{18}-51118 q^{17}-36080 q^{16}+4784 q^{15}+49423 q^{14}+56779 q^{13}+27752 q^{12}-21191 q^{11}-67829 q^{10}-61209 q^9-12969 q^8+51339 q^7+75348 q^6+51540 q^5-7291 q^4-73368 q^3-80674 q^2-34022 q+42712+82343 q^{-1} +69733 q^{-2} +10175 q^{-3} -67824 q^{-4} -88763 q^{-5} -50302 q^{-6} +29319 q^{-7} +78463 q^{-8} +77935 q^{-9} +24454 q^{-10} -56510 q^{-11} -86850 q^{-12} -58801 q^{-13} +16521 q^{-14} +68635 q^{-15} +78120 q^{-16} +33829 q^{-17} -43669 q^{-18} -79406 q^{-19} -61872 q^{-20} +5092 q^{-21} +56198 q^{-22} +74131 q^{-23} +40667 q^{-24} -29556 q^{-25} -68790 q^{-26} -62481 q^{-27} -6934 q^{-28} +40979 q^{-29} +67133 q^{-30} +46732 q^{-31} -12762 q^{-32} -54141 q^{-33} -60363 q^{-34} -19911 q^{-35} +21879 q^{-36} +55246 q^{-37} +50146 q^{-38} +5807 q^{-39} -34274 q^{-40} -52415 q^{-41} -30301 q^{-42} +617 q^{-43} +36906 q^{-44} +46584 q^{-45} +21237 q^{-46} -11463 q^{-47} -36634 q^{-48} -32612 q^{-49} -16977 q^{-50} +14804 q^{-51} +33809 q^{-52} +27250 q^{-53} +7649 q^{-54} -16177 q^{-55} -24473 q^{-56} -24292 q^{-57} -3790 q^{-58} +15615 q^{-59} +21777 q^{-60} +16265 q^{-61} +1102 q^{-62} -10285 q^{-63} -19881 q^{-64} -12162 q^{-65} +312 q^{-66} +9995 q^{-67} +13583 q^{-68} +8744 q^{-69} +1510 q^{-70} -9606 q^{-71} -10236 q^{-72} -6174 q^{-73} +306 q^{-74} +5815 q^{-75} +7349 q^{-76} +5783 q^{-77} -1449 q^{-78} -4247 q^{-79} -5094 q^{-80} -3062 q^{-81} +89 q^{-82} +2883 q^{-83} +4282 q^{-84} +1380 q^{-85} -183 q^{-86} -1887 q^{-87} -2122 q^{-88} -1464 q^{-89} +120 q^{-90} +1651 q^{-91} +988 q^{-92} +771 q^{-93} -111 q^{-94} -593 q^{-95} -904 q^{-96} -437 q^{-97} +313 q^{-98} +219 q^{-99} +416 q^{-100} +192 q^{-101} +27 q^{-102} -277 q^{-103} -223 q^{-104} +15 q^{-105} -33 q^{-106} +98 q^{-107} +80 q^{-108} +76 q^{-109} -50 q^{-110} -57 q^{-111} +2 q^{-112} -30 q^{-113} +9 q^{-114} +12 q^{-115} +29 q^{-116} -7 q^{-117} -12 q^{-118} +5 q^{-119} -7 q^{-120} +5 q^{-123} -3 q^{-125} + q^{-126} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{40}-3 q^{39}+2 q^{38}+3 q^{37}-5 q^{36}+5 q^{35}-13 q^{34}+12 q^{33}+15 q^{32}-26 q^{31}+13 q^{30}-39 q^{29}+46 q^{28}+51 q^{27}-87 q^{26}+12 q^{25}-84 q^{24}+141 q^{23}+133 q^{22}-224 q^{21}-43 q^{20}-159 q^{19}+367 q^{18}+330 q^{17}-465 q^{16}-261 q^{15}-323 q^{14}+776 q^{13}+754 q^{12}-726 q^{11}-700 q^{10}-707 q^9+1248 q^8+1438 q^7-800 q^6-1217 q^5-1341 q^4+1523 q^3+2168 q^2-569 q-1519-2029 q^{-1} +1438 q^{-2} +2626 q^{-3} -138 q^{-4} -1448 q^{-5} -2503 q^{-6} +1061 q^{-7} +2661 q^{-8} +313 q^{-9} -1070 q^{-10} -2661 q^{-11} +544 q^{-12} +2346 q^{-13} +687 q^{-14} -536 q^{-15} -2525 q^{-16} -9 q^{-17} +1791 q^{-18} +945 q^{-19} +51 q^{-20} -2134 q^{-21} -495 q^{-22} +1091 q^{-23} +1000 q^{-24} +561 q^{-25} -1508 q^{-26} -748 q^{-27} +376 q^{-28} +775 q^{-29} +825 q^{-30} -786 q^{-31} -666 q^{-32} -125 q^{-33} +369 q^{-34} +742 q^{-35} -223 q^{-36} -358 q^{-37} -274 q^{-38} +32 q^{-39} +439 q^{-40} +23 q^{-41} -83 q^{-42} -178 q^{-43} -88 q^{-44} +165 q^{-45} +44 q^{-46} +22 q^{-47} -58 q^{-48} -61 q^{-49} +38 q^{-50} +11 q^{-51} +20 q^{-52} -7 q^{-53} -19 q^{-54} +5 q^{-55} +5 q^{-57} -3 q^{-59} + q^{-60} </math> | |
|||
coloured_jones_5 = <math>q^{60}-3 q^{59}+2 q^{58}+3 q^{57}-5 q^{56}+q^{55}+3 q^{54}-7 q^{53}+6 q^{52}+11 q^{51}-15 q^{50}-8 q^{49}+9 q^{48}-2 q^{47}+17 q^{46}+12 q^{45}-34 q^{44}-33 q^{43}+19 q^{42}+52 q^{41}+43 q^{40}-26 q^{39}-122 q^{38}-88 q^{37}+94 q^{36}+243 q^{35}+157 q^{34}-187 q^{33}-475 q^{32}-308 q^{31}+327 q^{30}+856 q^{29}+614 q^{28}-469 q^{27}-1471 q^{26}-1147 q^{25}+587 q^{24}+2264 q^{23}+2023 q^{22}-517 q^{21}-3280 q^{20}-3284 q^{19}+208 q^{18}+4337 q^{17}+4905 q^{16}+521 q^{15}-5306 q^{14}-6822 q^{13}-1668 q^{12}+6010 q^{11}+8808 q^{10}+3212 q^9-6282 q^8-10665 q^7-5016 q^6+6067 q^5+12178 q^4+6893 q^3-5436 q^2-13168 q-8582+4379 q^{-1} +13626 q^{-2} +10042 q^{-3} -3240 q^{-4} -13532 q^{-5} -10991 q^{-6} +1901 q^{-7} +13001 q^{-8} +11683 q^{-9} -736 q^{-10} -12149 q^{-11} -11847 q^{-12} -529 q^{-13} +11049 q^{-14} +11898 q^{-15} +1564 q^{-16} -9750 q^{-17} -11570 q^{-18} -2728 q^{-19} +8303 q^{-20} +11195 q^{-21} +3685 q^{-22} -6674 q^{-23} -10464 q^{-24} -4740 q^{-25} +4915 q^{-26} +9620 q^{-27} +5520 q^{-28} -3062 q^{-29} -8373 q^{-30} -6148 q^{-31} +1175 q^{-32} +6950 q^{-33} +6365 q^{-34} +526 q^{-35} -5229 q^{-36} -6153 q^{-37} -1972 q^{-38} +3432 q^{-39} +5526 q^{-40} +2932 q^{-41} -1725 q^{-42} -4462 q^{-43} -3394 q^{-44} +228 q^{-45} +3251 q^{-46} +3324 q^{-47} +807 q^{-48} -1962 q^{-49} -2839 q^{-50} -1420 q^{-51} +880 q^{-52} +2125 q^{-53} +1555 q^{-54} -74 q^{-55} -1357 q^{-56} -1384 q^{-57} -375 q^{-58} +695 q^{-59} +1030 q^{-60} +540 q^{-61} -231 q^{-62} -658 q^{-63} -493 q^{-64} -24 q^{-65} +337 q^{-66} +363 q^{-67} +128 q^{-68} -136 q^{-69} -229 q^{-70} -117 q^{-71} +31 q^{-72} +103 q^{-73} +93 q^{-74} +16 q^{-75} -54 q^{-76} -50 q^{-77} -9 q^{-78} +8 q^{-79} +21 q^{-80} +20 q^{-81} -7 q^{-82} -12 q^{-83} -2 q^{-84} +5 q^{-87} -3 q^{-89} + q^{-90} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{84}-3 q^{83}+2 q^{82}+3 q^{81}-5 q^{80}+q^{79}-q^{78}+9 q^{77}-13 q^{76}+2 q^{75}+22 q^{74}-26 q^{73}-q^{72}+q^{71}+31 q^{70}-34 q^{69}-7 q^{68}+68 q^{67}-74 q^{66}-7 q^{65}+22 q^{64}+94 q^{63}-97 q^{62}-63 q^{61}+137 q^{60}-170 q^{59}+39 q^{58}+144 q^{57}+276 q^{56}-255 q^{55}-344 q^{54}+75 q^{53}-406 q^{52}+292 q^{51}+731 q^{50}+933 q^{49}-479 q^{48}-1257 q^{47}-794 q^{46}-1333 q^{45}+833 q^{44}+2600 q^{43}+3271 q^{42}-43 q^{41}-3161 q^{40}-3921 q^{39}-4755 q^{38}+780 q^{37}+6538 q^{36}+9562 q^{35}+3504 q^{34}-5075 q^{33}-10652 q^{32}-13770 q^{31}-2951 q^{30}+11446 q^{29}+21583 q^{28}+14012 q^{27}-3221 q^{26}-19617 q^{25}-30304 q^{24}-14793 q^{23}+12727 q^{22}+37220 q^{21}+33255 q^{20}+7408 q^{19}-25188 q^{18}-51118 q^{17}-36080 q^{16}+4784 q^{15}+49423 q^{14}+56779 q^{13}+27752 q^{12}-21191 q^{11}-67829 q^{10}-61209 q^9-12969 q^8+51339 q^7+75348 q^6+51540 q^5-7291 q^4-73368 q^3-80674 q^2-34022 q+42712+82343 q^{-1} +69733 q^{-2} +10175 q^{-3} -67824 q^{-4} -88763 q^{-5} -50302 q^{-6} +29319 q^{-7} +78463 q^{-8} +77935 q^{-9} +24454 q^{-10} -56510 q^{-11} -86850 q^{-12} -58801 q^{-13} +16521 q^{-14} +68635 q^{-15} +78120 q^{-16} +33829 q^{-17} -43669 q^{-18} -79406 q^{-19} -61872 q^{-20} +5092 q^{-21} +56198 q^{-22} +74131 q^{-23} +40667 q^{-24} -29556 q^{-25} -68790 q^{-26} -62481 q^{-27} -6934 q^{-28} +40979 q^{-29} +67133 q^{-30} +46732 q^{-31} -12762 q^{-32} -54141 q^{-33} -60363 q^{-34} -19911 q^{-35} +21879 q^{-36} +55246 q^{-37} +50146 q^{-38} +5807 q^{-39} -34274 q^{-40} -52415 q^{-41} -30301 q^{-42} +617 q^{-43} +36906 q^{-44} +46584 q^{-45} +21237 q^{-46} -11463 q^{-47} -36634 q^{-48} -32612 q^{-49} -16977 q^{-50} +14804 q^{-51} +33809 q^{-52} +27250 q^{-53} +7649 q^{-54} -16177 q^{-55} -24473 q^{-56} -24292 q^{-57} -3790 q^{-58} +15615 q^{-59} +21777 q^{-60} +16265 q^{-61} +1102 q^{-62} -10285 q^{-63} -19881 q^{-64} -12162 q^{-65} +312 q^{-66} +9995 q^{-67} +13583 q^{-68} +8744 q^{-69} +1510 q^{-70} -9606 q^{-71} -10236 q^{-72} -6174 q^{-73} +306 q^{-74} +5815 q^{-75} +7349 q^{-76} +5783 q^{-77} -1449 q^{-78} -4247 q^{-79} -5094 q^{-80} -3062 q^{-81} +89 q^{-82} +2883 q^{-83} +4282 q^{-84} +1380 q^{-85} -183 q^{-86} -1887 q^{-87} -2122 q^{-88} -1464 q^{-89} +120 q^{-90} +1651 q^{-91} +988 q^{-92} +771 q^{-93} -111 q^{-94} -593 q^{-95} -904 q^{-96} -437 q^{-97} +313 q^{-98} +219 q^{-99} +416 q^{-100} +192 q^{-101} +27 q^{-102} -277 q^{-103} -223 q^{-104} +15 q^{-105} -33 q^{-106} +98 q^{-107} +80 q^{-108} +76 q^{-109} -50 q^{-110} -57 q^{-111} +2 q^{-112} -30 q^{-113} +9 q^{-114} +12 q^{-115} +29 q^{-116} -7 q^{-117} -12 q^{-118} +5 q^{-119} -7 q^{-120} +5 q^{-123} -3 q^{-125} + q^{-126} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 32]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 32]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[15, 20, 16, 1], |
|||
X[7, 17, 8, 16], X[19, 7, 20, 6], X[9, 19, 10, 18], X[17, 9, 18, 8], |
X[7, 17, 8, 16], X[19, 7, 20, 6], X[9, 19, 10, 18], X[17, 9, 18, 8], |
||
X[13, 10, 14, 11], X[11, 2, 12, 3]]</nowiki></pre></td></tr> |
X[13, 10, 14, 11], X[11, 2, 12, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 32]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -3, 6, -5, 8, -7, 9, -10, 2, -9, 3, -4, 5, -8, |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -3, 6, -5, 8, -7, 9, -10, 2, -9, 3, -4, 5, -8, |
|||
7, -6, 4]</nowiki></pre></td></tr> |
7, -6, 4]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 32]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 12, 14, 16, 18, 2, 10, 20, 8, 6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 32]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, -2, 1, -2, -2, -3, 2, -3, -3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 32]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 32]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_32_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 32]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 32]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 8 15 2 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 32]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_32_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 32]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 32]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 8 15 2 3 |
|||
19 - -- + -- - -- - 15 t + 8 t - 2 t |
19 - -- + -- - -- - 15 t + 8 t - 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 32]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 - z - 4 z - 2 z</nowiki></pre></td></tr> |
1 - z - 4 z - 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 32]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 32]], KnotSignature[Knot[10, 32]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{69, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 32]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 5 8 11 11 2 3 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 32]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 5 8 11 11 2 3 4 |
|||
11 + q - -- + -- - -- + -- - -- - 9 q + 6 q - 3 q + q |
11 + q - -- + -- - -- + -- - -- - 9 q + 6 q - 3 q + q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 32]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 32]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -16 2 3 -4 -2 2 4 6 8 10 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 32]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -16 2 3 -4 -2 2 4 6 8 10 |
|||
-2 + q - q - --- + -- + q + q + 2 q - 2 q + q + q - q + |
-2 + q - q - --- + -- + q + q + 2 q - 2 q + q + q - q + |
||
10 8 |
10 8 |
||
Line 148: | Line 99: | ||
12 |
12 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 32]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
-2 2 2 2 z 2 2 4 2 4 z 2 4 |
-2 2 2 2 z 2 2 4 2 4 z 2 4 |
||
-1 + a + a - 3 z + ---- - 2 a z + 2 a z - 3 z + -- - 3 a z + |
-1 + a + a - 3 z + ---- - 2 a z + 2 a z - 3 z + -- - 3 a z + |
||
Line 158: | Line 108: | ||
4 4 6 2 6 |
4 4 6 2 6 |
||
a z - z - a z</nowiki></pre></td></tr> |
a z - z - a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 32]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
-2 2 z z 3 5 2 z 4 z |
-2 2 z z 3 5 2 z 4 z |
||
-1 - a - a + -- + - - a z - 2 a z - a z + 7 z - -- + ---- + |
-1 - a - a + -- + - - a z - 2 a z - a z + 7 z - -- + ---- + |
||
Line 186: | Line 135: | ||
3 7 5 7 8 2 8 4 8 9 3 9 |
3 7 5 7 8 2 8 4 8 9 3 9 |
||
5 a z + 3 a z + 3 z + 6 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
5 a z + 3 a z + 3 z + 6 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 32]], Vassiliev[3][Knot[10, 32]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 32]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6 1 2 1 3 2 5 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 32]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6 1 2 1 3 2 5 3 |
|||
- + 6 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
- + 6 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
||
Line 203: | Line 150: | ||
5 3 7 3 9 4 |
5 3 7 3 9 4 |
||
q t + 2 q t + q t</nowiki></pre></td></tr> |
q t + 2 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 32], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 3 10 12 8 33 21 32 65 22 66 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 3 10 12 8 33 21 32 65 22 66 |
|||
86 + q - --- + --- - --- - --- + --- - --- - --- + -- - -- - -- + |
86 + q - --- + --- - --- - --- + --- - --- - --- + -- - -- - -- + |
||
17 15 14 13 12 11 10 9 8 7 |
17 15 14 13 12 11 10 9 8 7 |
||
Line 217: | Line 163: | ||
5 6 7 8 9 10 11 12 |
5 6 7 8 9 10 11 12 |
||
47 q + 25 q + 8 q - 17 q + 7 q + 2 q - 3 q + q</nowiki></pre></td></tr> |
47 q + 25 q + 8 q - 17 q + 7 q + 2 q - 3 q + q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:39, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 32's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,12,4,13 X5,14,6,15 X15,20,16,1 X7,17,8,16 X19,7,20,6 X9,19,10,18 X17,9,18,8 X13,10,14,11 X11,2,12,3 |
Gauss code | -1, 10, -2, 1, -3, 6, -5, 8, -7, 9, -10, 2, -9, 3, -4, 5, -8, 7, -6, 4 |
Dowker-Thistlethwaite code | 4 12 14 16 18 2 10 20 8 6 |
Conway Notation | [311122] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{12, 4}, {3, 10}, {9, 11}, {10, 12}, {11, 5}, {4, 6}, {5, 2}, {8, 3}, {6, 1}, {7, 9}, {2, 8}, {1, 7}] |
[edit Notes on presentations of 10 32]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 32"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,12,4,13 X5,14,6,15 X15,20,16,1 X7,17,8,16 X19,7,20,6 X9,19,10,18 X17,9,18,8 X13,10,14,11 X11,2,12,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -3, 6, -5, 8, -7, 9, -10, 2, -9, 3, -4, 5, -8, 7, -6, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 14 16 18 2 10 20 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[311122] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 4}, {3, 10}, {9, 11}, {10, 12}, {11, 5}, {4, 6}, {5, 2}, {8, 3}, {6, 1}, {7, 9}, {2, 8}, {1, 7}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 32"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 69, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 32"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-1, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 32. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|