10 31
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 31's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,12,4,13 X9,14,10,15 X13,10,14,11 X15,1,16,20 X5,17,6,16 X19,7,20,6 X7,19,8,18 X17,9,18,8 X11,2,12,3 |
Gauss code | -1, 10, -2, 1, -6, 7, -8, 9, -3, 4, -10, 2, -4, 3, -5, 6, -9, 8, -7, 5 |
Dowker-Thistlethwaite code | 4 12 16 18 14 2 10 20 8 6 |
Conway Notation | [31132] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
![]() |
![]() [{12, 5}, {1, 10}, {9, 11}, {10, 12}, {11, 8}, {6, 9}, {8, 4}, {5, 2}, {3, 1}, {4, 7}, {2, 6}, {7, 3}] |
[edit Notes on presentations of 10 31]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 31"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,12,4,13 X9,14,10,15 X13,10,14,11 X15,1,16,20 X5,17,6,16 X19,7,20,6 X7,19,8,18 X17,9,18,8 X11,2,12,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -6, 7, -8, 9, -3, 4, -10, 2, -4, 3, -5, 6, -9, 8, -7, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 16 18 14 2 10 20 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[31132] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
![]() |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 5}, {1, 10}, {9, 11}, {10, 12}, {11, 8}, {6, 9}, {8, 4}, {5, 2}, {3, 1}, {4, 7}, {2, 6}, {7, 3}] |
In[14]:=
|
Draw[ap]
|
![]() |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-14 t+21-14 t^{-1} +4 t^{-2} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 z^4+2 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 57, 0 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+2 q^4-4 q^3+7 q^2-8 q+10-9 q^{-1} +7 q^{-2} -5 q^{-3} +3 q^{-4} - q^{-5} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^4+z^4 a^2-a^2+2 z^4+3 z^2+2+z^4 a^{-2} +z^2 a^{-2} + a^{-2} -z^2 a^{-4} - a^{-4} } |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^9+z^9 a^{-1} +3 a^2 z^8+2 z^8 a^{-2} +5 z^8+4 a^3 z^7+3 a z^7+z^7 a^{-1} +2 z^7 a^{-3} +3 a^4 z^6-6 a^2 z^6-3 z^6 a^{-2} +2 z^6 a^{-4} -14 z^6+a^5 z^5-10 a^3 z^5-12 a z^5-4 z^5 a^{-1} -2 z^5 a^{-3} +z^5 a^{-5} -7 a^4 z^4+5 a^2 z^4+3 z^4 a^{-2} -5 z^4 a^{-4} +20 z^4-2 a^5 z^3+7 a^3 z^3+15 a z^3+6 z^3 a^{-1} -3 z^3 a^{-3} -3 z^3 a^{-5} +2 a^4 z^2-3 a^2 z^2-2 z^2 a^{-2} +3 z^2 a^{-4} -10 z^2-2 a^3 z-4 a z-2 z a^{-1} +2 z a^{-3} +2 z a^{-5} +a^2- a^{-2} - a^{-4} +2} |
The A2 invariant | |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 31"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-14 t+21-14 t^{-1} +4 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 z^4+2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 57, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+2 q^4-4 q^3+7 q^2-8 q+10-9 q^{-1} +7 q^{-2} -5 q^{-3} +3 q^{-4} - q^{-5} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^4+z^4 a^2-a^2+2 z^4+3 z^2+2+z^4 a^{-2} +z^2 a^{-2} + a^{-2} -z^2 a^{-4} - a^{-4} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^9+z^9 a^{-1} +3 a^2 z^8+2 z^8 a^{-2} +5 z^8+4 a^3 z^7+3 a z^7+z^7 a^{-1} +2 z^7 a^{-3} +3 a^4 z^6-6 a^2 z^6-3 z^6 a^{-2} +2 z^6 a^{-4} -14 z^6+a^5 z^5-10 a^3 z^5-12 a z^5-4 z^5 a^{-1} -2 z^5 a^{-3} +z^5 a^{-5} -7 a^4 z^4+5 a^2 z^4+3 z^4 a^{-2} -5 z^4 a^{-4} +20 z^4-2 a^5 z^3+7 a^3 z^3+15 a z^3+6 z^3 a^{-1} -3 z^3 a^{-3} -3 z^3 a^{-5} +2 a^4 z^2-3 a^2 z^2-2 z^2 a^{-2} +3 z^2 a^{-4} -10 z^2-2 a^3 z-4 a z-2 z a^{-1} +2 z a^{-3} +2 z a^{-5} +a^2- a^{-2} - a^{-4} +2} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_68,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 31"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_68,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (2, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 31. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-2 q^{14}+5 q^{12}-8 q^{11}+16 q^9-21 q^8-3 q^7+38 q^6-37 q^5-13 q^4+63 q^3-47 q^2-27 q+78-45 q^{-1} -35 q^{-2} +72 q^{-3} -30 q^{-4} -34 q^{-5} +50 q^{-6} -12 q^{-7} -26 q^{-8} +25 q^{-9} - q^{-10} -13 q^{-11} +8 q^{-12} + q^{-13} -3 q^{-14} + q^{-15} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{30}+2 q^{29}-q^{27}-3 q^{26}+5 q^{25}+q^{24}-5 q^{23}-4 q^{22}+13 q^{21}+q^{20}-19 q^{19}-6 q^{18}+36 q^{17}+10 q^{16}-55 q^{15}-24 q^{14}+76 q^{13}+52 q^{12}-103 q^{11}-79 q^{10}+113 q^9+128 q^8-132 q^7-160 q^6+124 q^5+208 q^4-129 q^3-227 q^2+105 q+258-97 q^{-1} -256 q^{-2} +67 q^{-3} +256 q^{-4} -42 q^{-5} -238 q^{-6} +12 q^{-7} +212 q^{-8} +16 q^{-9} -177 q^{-10} -39 q^{-11} +138 q^{-12} +53 q^{-13} -98 q^{-14} -59 q^{-15} +64 q^{-16} +53 q^{-17} -36 q^{-18} -42 q^{-19} +17 q^{-20} +30 q^{-21} -7 q^{-22} -19 q^{-23} +3 q^{-24} +10 q^{-25} - q^{-26} -4 q^{-27} - q^{-28} +3 q^{-29} - q^{-30} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{50}-2 q^{49}+q^{47}-q^{46}+6 q^{45}-7 q^{44}+q^{43}+2 q^{42}-9 q^{41}+17 q^{40}-14 q^{39}+10 q^{38}+9 q^{37}-34 q^{36}+23 q^{35}-30 q^{34}+41 q^{33}+44 q^{32}-70 q^{31}+6 q^{30}-95 q^{29}+84 q^{28}+146 q^{27}-64 q^{26}-21 q^{25}-267 q^{24}+65 q^{23}+301 q^{22}+63 q^{21}+39 q^{20}-536 q^{19}-113 q^{18}+403 q^{17}+306 q^{16}+274 q^{15}-781 q^{14}-427 q^{13}+349 q^{12}+542 q^{11}+640 q^{10}-892 q^9-735 q^8+170 q^7+664 q^6+987 q^5-867 q^4-923 q^3-36 q^2+660 q+1213-751 q^{-1} -969 q^{-2} -215 q^{-3} +552 q^{-4} +1288 q^{-5} -548 q^{-6} -875 q^{-7} -371 q^{-8} +343 q^{-9} +1215 q^{-10} -275 q^{-11} -645 q^{-12} -466 q^{-13} +63 q^{-14} +980 q^{-15} -17 q^{-16} -316 q^{-17} -438 q^{-18} -187 q^{-19} +632 q^{-20} +111 q^{-21} -18 q^{-22} -281 q^{-23} -283 q^{-24} +296 q^{-25} +87 q^{-26} +123 q^{-27} -102 q^{-28} -220 q^{-29} +96 q^{-30} +12 q^{-31} +110 q^{-32} -5 q^{-33} -111 q^{-34} +28 q^{-35} -18 q^{-36} +52 q^{-37} +10 q^{-38} -42 q^{-39} +13 q^{-40} -12 q^{-41} +16 q^{-42} +5 q^{-43} -13 q^{-44} +4 q^{-45} -3 q^{-46} +4 q^{-47} + q^{-48} -3 q^{-49} + q^{-50} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|