10 30
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 30's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X9,18,10,19 X13,20,14,1 X19,14,20,15 X17,6,18,7 X7,16,8,17 X15,8,16,9 |
| Gauss code | -1, 4, -3, 1, -2, 8, -9, 10, -5, 3, -4, 2, -6, 7, -10, 9, -8, 5, -7, 6 |
| Dowker-Thistlethwaite code | 4 10 12 16 18 2 20 8 6 14 |
| Conway Notation | [312112] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
|
![]() [{12, 7}, {6, 10}, {11, 8}, {7, 9}, {10, 12}, {8, 5}, {1, 6}, {4, 11}, {5, 3}, {2, 4}, {3, 1}, {9, 2}] |
[edit Notes on presentations of 10 30]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 30"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X9,18,10,19 X13,20,14,1 X19,14,20,15 X17,6,18,7 X7,16,8,17 X15,8,16,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 8, -9, 10, -5, 3, -4, 2, -6, 7, -10, 9, -8, 5, -7, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 16 18 2 20 8 6 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[312112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 7}, {6, 10}, {11, 8}, {7, 9}, {10, 12}, {8, 5}, {1, 6}, {4, 11}, {5, 3}, {2, 4}, {3, 1}, {9, 2}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 30"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 67, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a154,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 30"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a154,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (1, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 30. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-3 q^3+2 q^2+7 q-16+7 q^{-1} +23 q^{-2} -42 q^{-3} +14 q^{-4} +49 q^{-5} -74 q^{-6} +15 q^{-7} +77 q^{-8} -94 q^{-9} +6 q^{-10} +91 q^{-11} -87 q^{-12} -9 q^{-13} +84 q^{-14} -61 q^{-15} -20 q^{-16} +61 q^{-17} -30 q^{-18} -20 q^{-19} +32 q^{-20} -8 q^{-21} -12 q^{-22} +10 q^{-23} -3 q^{-25} + q^{-26} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-3 q^8+2 q^7+3 q^6-q^5-10 q^4+5 q^3+18 q^2-9 q-32+18 q^{-1} +50 q^{-2} -26 q^{-3} -83 q^{-4} +45 q^{-5} +118 q^{-6} -53 q^{-7} -177 q^{-8} +73 q^{-9} +229 q^{-10} -67 q^{-11} -301 q^{-12} +69 q^{-13} +346 q^{-14} -36 q^{-15} -401 q^{-16} +17 q^{-17} +413 q^{-18} +30 q^{-19} -420 q^{-20} -67 q^{-21} +398 q^{-22} +108 q^{-23} -364 q^{-24} -144 q^{-25} +317 q^{-26} +170 q^{-27} -258 q^{-28} -191 q^{-29} +201 q^{-30} +192 q^{-31} -135 q^{-32} -187 q^{-33} +84 q^{-34} +159 q^{-35} -32 q^{-36} -131 q^{-37} +2 q^{-38} +92 q^{-39} +17 q^{-40} -58 q^{-41} -22 q^{-42} +31 q^{-43} +19 q^{-44} -14 q^{-45} -12 q^{-46} +5 q^{-47} +5 q^{-48} -3 q^{-50} + q^{-51} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-3 q^{15}+2 q^{14}+3 q^{13}-5 q^{12}+5 q^{11}-12 q^{10}+11 q^9+12 q^8-24 q^7+18 q^6-34 q^5+35 q^4+33 q^3-75 q^2+37 q-63+104 q^{-1} +71 q^{-2} -198 q^{-3} +28 q^{-4} -90 q^{-5} +282 q^{-6} +175 q^{-7} -429 q^{-8} -110 q^{-9} -155 q^{-10} +631 q^{-11} +452 q^{-12} -711 q^{-13} -451 q^{-14} -382 q^{-15} +1072 q^{-16} +958 q^{-17} -865 q^{-18} -891 q^{-19} -831 q^{-20} +1377 q^{-21} +1542 q^{-22} -757 q^{-23} -1180 q^{-24} -1371 q^{-25} +1379 q^{-26} +1946 q^{-27} -448 q^{-28} -1173 q^{-29} -1774 q^{-30} +1110 q^{-31} +2023 q^{-32} -79 q^{-33} -906 q^{-34} -1945 q^{-35} +691 q^{-36} +1824 q^{-37} +269 q^{-38} -499 q^{-39} -1904 q^{-40} +214 q^{-41} +1431 q^{-42} +554 q^{-43} -27 q^{-44} -1669 q^{-45} -238 q^{-46} +902 q^{-47} +686 q^{-48} +414 q^{-49} -1228 q^{-50} -520 q^{-51} +330 q^{-52} +579 q^{-53} +672 q^{-54} -669 q^{-55} -516 q^{-56} -94 q^{-57} +286 q^{-58} +636 q^{-59} -201 q^{-60} -294 q^{-61} -236 q^{-62} +16 q^{-63} +394 q^{-64} +17 q^{-65} -70 q^{-66} -161 q^{-67} -85 q^{-68} +155 q^{-69} +40 q^{-70} +22 q^{-71} -55 q^{-72} -60 q^{-73} +37 q^{-74} +11 q^{-75} +20 q^{-76} -7 q^{-77} -19 q^{-78} +5 q^{-79} +5 q^{-81} -3 q^{-83} + q^{-84} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




