10 158: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- --> |
|||
k = 158 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,5,-2,8,-7,-1,3,-4,-5,2,-6,10,4,-3,9,7,-8,6,-10,-9/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=158|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,5,-2,8,-7,-1,3,-4,-5,2,-6,10,4,-3,9,7,-8,6,-10,-9/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>2</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>2</td></tr> |
||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
||
Line 71: | Line 35: | ||
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{13}+2 q^{12}-8 q^{11}+2 q^{10}+17 q^9-23 q^8-7 q^7+44 q^6-33 q^5-26 q^4+67 q^3-33 q^2-42 q+73-24 q^{-1} -46 q^{-2} +58 q^{-3} -9 q^{-4} -36 q^{-5} +31 q^{-6} +2 q^{-7} -17 q^{-8} +8 q^{-9} +2 q^{-10} -3 q^{-11} + q^{-12} </math> | |
|||
coloured_jones_3 = <math>2 q^{26}-2 q^{24}-12 q^{23}+8 q^{22}+22 q^{21}+4 q^{20}-48 q^{19}-22 q^{18}+69 q^{17}+61 q^{16}-85 q^{15}-110 q^{14}+84 q^{13}+170 q^{12}-71 q^{11}-226 q^{10}+44 q^9+271 q^8-4 q^7-312 q^6-29 q^5+331 q^4+67 q^3-341 q^2-98 q+334+125 q^{-1} -309 q^{-2} -149 q^{-3} +274 q^{-4} +158 q^{-5} -216 q^{-6} -164 q^{-7} +159 q^{-8} +148 q^{-9} -95 q^{-10} -128 q^{-11} +52 q^{-12} +88 q^{-13} -14 q^{-14} -58 q^{-15} +31 q^{-17} +3 q^{-18} -13 q^{-19} -2 q^{-20} +4 q^{-21} +2 q^{-22} -3 q^{-23} + q^{-24} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{13}+2 q^{12}-8 q^{11}+2 q^{10}+17 q^9-23 q^8-7 q^7+44 q^6-33 q^5-26 q^4+67 q^3-33 q^2-42 q+73-24 q^{-1} -46 q^{-2} +58 q^{-3} -9 q^{-4} -36 q^{-5} +31 q^{-6} +2 q^{-7} -17 q^{-8} +8 q^{-9} +2 q^{-10} -3 q^{-11} + q^{-12} </math>|J3=<math>2 q^{26}-2 q^{24}-12 q^{23}+8 q^{22}+22 q^{21}+4 q^{20}-48 q^{19}-22 q^{18}+69 q^{17}+61 q^{16}-85 q^{15}-110 q^{14}+84 q^{13}+170 q^{12}-71 q^{11}-226 q^{10}+44 q^9+271 q^8-4 q^7-312 q^6-29 q^5+331 q^4+67 q^3-341 q^2-98 q+334+125 q^{-1} -309 q^{-2} -149 q^{-3} +274 q^{-4} +158 q^{-5} -216 q^{-6} -164 q^{-7} +159 q^{-8} +148 q^{-9} -95 q^{-10} -128 q^{-11} +52 q^{-12} +88 q^{-13} -14 q^{-14} -58 q^{-15} +31 q^{-17} +3 q^{-18} -13 q^{-19} -2 q^{-20} +4 q^{-21} +2 q^{-22} -3 q^{-23} + q^{-24} </math>|J4=<math>q^{44}+2 q^{43}-8 q^{41}-6 q^{40}-6 q^{39}+23 q^{38}+39 q^{37}-11 q^{36}-41 q^{35}-97 q^{34}+13 q^{33}+156 q^{32}+105 q^{31}+2 q^{30}-315 q^{29}-201 q^{28}+199 q^{27}+369 q^{26}+337 q^{25}-455 q^{24}-626 q^{23}-75 q^{22}+542 q^{21}+948 q^{20}-274 q^{19}-995 q^{18}-635 q^{17}+406 q^{16}+1549 q^{15}+177 q^{14}-1101 q^{13}-1211 q^{12}+39 q^{11}+1927 q^{10}+652 q^9-993 q^8-1608 q^7-352 q^6+2060 q^5+1007 q^4-781 q^3-1803 q^2-679 q+1980+1232 q^{-1} -482 q^{-2} -1785 q^{-3} -951 q^{-4} +1639 q^{-5} +1300 q^{-6} -65 q^{-7} -1485 q^{-8} -1121 q^{-9} +1039 q^{-10} +1112 q^{-11} +341 q^{-12} -911 q^{-13} -1030 q^{-14} +389 q^{-15} +666 q^{-16} +491 q^{-17} -318 q^{-18} -658 q^{-19} +10 q^{-20} +211 q^{-21} +338 q^{-22} - q^{-23} -263 q^{-24} -53 q^{-25} -2 q^{-26} +127 q^{-27} +41 q^{-28} -64 q^{-29} -11 q^{-30} -23 q^{-31} +26 q^{-32} +14 q^{-33} -12 q^{-34} +2 q^{-35} -6 q^{-36} +4 q^{-37} +2 q^{-38} -3 q^{-39} + q^{-40} </math>|J5=<math>2 q^{66}+2 q^{64}-4 q^{63}-12 q^{62}-12 q^{61}+10 q^{60}+18 q^{59}+46 q^{58}+40 q^{57}-44 q^{56}-112 q^{55}-110 q^{54}-32 q^{53}+157 q^{52}+327 q^{51}+199 q^{50}-151 q^{49}-495 q^{48}-580 q^{47}-124 q^{46}+663 q^{45}+1082 q^{44}+644 q^{43}-502 q^{42}-1585 q^{41}-1535 q^{40}-20 q^{39}+1879 q^{38}+2563 q^{37}+1060 q^{36}-1760 q^{35}-3571 q^{34}-2475 q^{33}+1081 q^{32}+4293 q^{31}+4125 q^{30}+114 q^{29}-4574 q^{28}-5714 q^{27}-1729 q^{26}+4346 q^{25}+7080 q^{24}+3532 q^{23}-3682 q^{22}-8103 q^{21}-5279 q^{20}+2711 q^{19}+8717 q^{18}+6878 q^{17}-1604 q^{16}-9057 q^{15}-8176 q^{14}+547 q^{13}+9079 q^{12}+9223 q^{11}+468 q^{10}-9020 q^9-9999 q^8-1322 q^7+8795 q^6+10574 q^5+2135 q^4-8488 q^3-10991 q^2-2896 q+8024+11225 q^{-1} +3678 q^{-2} -7312 q^{-3} -11259 q^{-4} -4511 q^{-5} +6352 q^{-6} +10977 q^{-7} +5295 q^{-8} -5021 q^{-9} -10328 q^{-10} -5983 q^{-11} +3490 q^{-12} +9194 q^{-13} +6359 q^{-14} -1780 q^{-15} -7664 q^{-16} -6351 q^{-17} +259 q^{-18} +5791 q^{-19} +5805 q^{-20} +1034 q^{-21} -3918 q^{-22} -4867 q^{-23} -1719 q^{-24} +2186 q^{-25} +3616 q^{-26} +1971 q^{-27} -890 q^{-28} -2419 q^{-29} -1710 q^{-30} +80 q^{-31} +1350 q^{-32} +1281 q^{-33} +290 q^{-34} -636 q^{-35} -805 q^{-36} -337 q^{-37} +213 q^{-38} +429 q^{-39} +252 q^{-40} -25 q^{-41} -189 q^{-42} -159 q^{-43} -18 q^{-44} +75 q^{-45} +68 q^{-46} +18 q^{-47} -10 q^{-48} -36 q^{-49} -17 q^{-50} +14 q^{-51} +9 q^{-52} - q^{-53} +3 q^{-54} -2 q^{-55} -6 q^{-56} +4 q^{-57} +2 q^{-58} -3 q^{-59} + q^{-60} </math>|J6=<math>q^{93}+2 q^{92}-6 q^{89}-8 q^{88}-16 q^{87}-6 q^{86}+23 q^{85}+49 q^{84}+53 q^{83}+27 q^{82}-13 q^{81}-149 q^{80}-201 q^{79}-151 q^{78}+72 q^{77}+294 q^{76}+462 q^{75}+520 q^{74}-12 q^{73}-624 q^{72}-1148 q^{71}-961 q^{70}-286 q^{69}+958 q^{68}+2323 q^{67}+2127 q^{66}+724 q^{65}-1827 q^{64}-3549 q^{63}-4097 q^{62}-1793 q^{61}+2869 q^{60}+6130 q^{59}+6668 q^{58}+2524 q^{57}-3377 q^{56}-9745 q^{55}-10545 q^{54}-3860 q^{53}+5739 q^{52}+14062 q^{51}+14064 q^{50}+6345 q^{49}-9153 q^{48}-20164 q^{47}-18853 q^{46}-5949 q^{45}+13461 q^{44}+25817 q^{43}+24981 q^{42}+4011 q^{41}-20582 q^{40}-33606 q^{39}-26563 q^{38}-281 q^{37}+27898 q^{36}+42963 q^{35}+25729 q^{34}-8209 q^{33}-38908 q^{32}-46125 q^{31}-21794 q^{30}+18315 q^{29}+52054 q^{28}+46125 q^{27}+10739 q^{26}-33987 q^{25}-57558 q^{24}-41701 q^{23}+3463 q^{22}+52198 q^{21}+59237 q^{20}+27904 q^{19}-24708 q^{18}-61232 q^{17}-55134 q^{16}-9724 q^{15}+48293 q^{14}+65607 q^{13}+39708 q^{12}-16293 q^{11}-61087 q^{10}-62882 q^9-19072 q^8+43936 q^7+68412 q^6+47482 q^5-9520 q^4-59520 q^3-67754 q^2-26585 q+38770+69206 q^{-1} +53985 q^{-2} -1702 q^{-3} -55314 q^{-4} -70716 q^{-5} -35066 q^{-6} +29559 q^{-7} +66002 q^{-8} +59592 q^{-9} +9892 q^{-10} -44730 q^{-11} -68900 q^{-12} -44099 q^{-13} +13888 q^{-14} +54540 q^{-15} +60275 q^{-16} +23623 q^{-17} -25874 q^{-18} -57448 q^{-19} -48179 q^{-20} -4933 q^{-21} +33670 q^{-22} +50518 q^{-23} +32154 q^{-24} -3966 q^{-25} -36090 q^{-26} -41141 q^{-27} -17708 q^{-28} +10460 q^{-29} +31009 q^{-30} +28894 q^{-31} +10489 q^{-32} -13435 q^{-33} -24716 q^{-34} -18027 q^{-35} -4160 q^{-36} +11338 q^{-37} +16738 q^{-38} +12231 q^{-39} +65 q^{-40} -8917 q^{-41} -10062 q^{-42} -6722 q^{-43} +603 q^{-44} +5509 q^{-45} +6757 q^{-46} +2925 q^{-47} -1027 q^{-48} -2934 q^{-49} -3501 q^{-50} -1529 q^{-51} +529 q^{-52} +2083 q^{-53} +1423 q^{-54} +510 q^{-55} -182 q^{-56} -934 q^{-57} -729 q^{-58} -283 q^{-59} +371 q^{-60} +290 q^{-61} +217 q^{-62} +155 q^{-63} -124 q^{-64} -165 q^{-65} -125 q^{-66} +59 q^{-67} +14 q^{-68} +28 q^{-69} +59 q^{-70} -8 q^{-71} -23 q^{-72} -31 q^{-73} +20 q^{-74} -3 q^{-75} -6 q^{-76} +14 q^{-77} - q^{-78} -2 q^{-79} -6 q^{-80} +4 q^{-81} +2 q^{-82} -3 q^{-83} + q^{-84} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{44}+2 q^{43}-8 q^{41}-6 q^{40}-6 q^{39}+23 q^{38}+39 q^{37}-11 q^{36}-41 q^{35}-97 q^{34}+13 q^{33}+156 q^{32}+105 q^{31}+2 q^{30}-315 q^{29}-201 q^{28}+199 q^{27}+369 q^{26}+337 q^{25}-455 q^{24}-626 q^{23}-75 q^{22}+542 q^{21}+948 q^{20}-274 q^{19}-995 q^{18}-635 q^{17}+406 q^{16}+1549 q^{15}+177 q^{14}-1101 q^{13}-1211 q^{12}+39 q^{11}+1927 q^{10}+652 q^9-993 q^8-1608 q^7-352 q^6+2060 q^5+1007 q^4-781 q^3-1803 q^2-679 q+1980+1232 q^{-1} -482 q^{-2} -1785 q^{-3} -951 q^{-4} +1639 q^{-5} +1300 q^{-6} -65 q^{-7} -1485 q^{-8} -1121 q^{-9} +1039 q^{-10} +1112 q^{-11} +341 q^{-12} -911 q^{-13} -1030 q^{-14} +389 q^{-15} +666 q^{-16} +491 q^{-17} -318 q^{-18} -658 q^{-19} +10 q^{-20} +211 q^{-21} +338 q^{-22} - q^{-23} -263 q^{-24} -53 q^{-25} -2 q^{-26} +127 q^{-27} +41 q^{-28} -64 q^{-29} -11 q^{-30} -23 q^{-31} +26 q^{-32} +14 q^{-33} -12 q^{-34} +2 q^{-35} -6 q^{-36} +4 q^{-37} +2 q^{-38} -3 q^{-39} + q^{-40} </math> | |
|||
coloured_jones_5 = <math>2 q^{66}+2 q^{64}-4 q^{63}-12 q^{62}-12 q^{61}+10 q^{60}+18 q^{59}+46 q^{58}+40 q^{57}-44 q^{56}-112 q^{55}-110 q^{54}-32 q^{53}+157 q^{52}+327 q^{51}+199 q^{50}-151 q^{49}-495 q^{48}-580 q^{47}-124 q^{46}+663 q^{45}+1082 q^{44}+644 q^{43}-502 q^{42}-1585 q^{41}-1535 q^{40}-20 q^{39}+1879 q^{38}+2563 q^{37}+1060 q^{36}-1760 q^{35}-3571 q^{34}-2475 q^{33}+1081 q^{32}+4293 q^{31}+4125 q^{30}+114 q^{29}-4574 q^{28}-5714 q^{27}-1729 q^{26}+4346 q^{25}+7080 q^{24}+3532 q^{23}-3682 q^{22}-8103 q^{21}-5279 q^{20}+2711 q^{19}+8717 q^{18}+6878 q^{17}-1604 q^{16}-9057 q^{15}-8176 q^{14}+547 q^{13}+9079 q^{12}+9223 q^{11}+468 q^{10}-9020 q^9-9999 q^8-1322 q^7+8795 q^6+10574 q^5+2135 q^4-8488 q^3-10991 q^2-2896 q+8024+11225 q^{-1} +3678 q^{-2} -7312 q^{-3} -11259 q^{-4} -4511 q^{-5} +6352 q^{-6} +10977 q^{-7} +5295 q^{-8} -5021 q^{-9} -10328 q^{-10} -5983 q^{-11} +3490 q^{-12} +9194 q^{-13} +6359 q^{-14} -1780 q^{-15} -7664 q^{-16} -6351 q^{-17} +259 q^{-18} +5791 q^{-19} +5805 q^{-20} +1034 q^{-21} -3918 q^{-22} -4867 q^{-23} -1719 q^{-24} +2186 q^{-25} +3616 q^{-26} +1971 q^{-27} -890 q^{-28} -2419 q^{-29} -1710 q^{-30} +80 q^{-31} +1350 q^{-32} +1281 q^{-33} +290 q^{-34} -636 q^{-35} -805 q^{-36} -337 q^{-37} +213 q^{-38} +429 q^{-39} +252 q^{-40} -25 q^{-41} -189 q^{-42} -159 q^{-43} -18 q^{-44} +75 q^{-45} +68 q^{-46} +18 q^{-47} -10 q^{-48} -36 q^{-49} -17 q^{-50} +14 q^{-51} +9 q^{-52} - q^{-53} +3 q^{-54} -2 q^{-55} -6 q^{-56} +4 q^{-57} +2 q^{-58} -3 q^{-59} + q^{-60} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{93}+2 q^{92}-6 q^{89}-8 q^{88}-16 q^{87}-6 q^{86}+23 q^{85}+49 q^{84}+53 q^{83}+27 q^{82}-13 q^{81}-149 q^{80}-201 q^{79}-151 q^{78}+72 q^{77}+294 q^{76}+462 q^{75}+520 q^{74}-12 q^{73}-624 q^{72}-1148 q^{71}-961 q^{70}-286 q^{69}+958 q^{68}+2323 q^{67}+2127 q^{66}+724 q^{65}-1827 q^{64}-3549 q^{63}-4097 q^{62}-1793 q^{61}+2869 q^{60}+6130 q^{59}+6668 q^{58}+2524 q^{57}-3377 q^{56}-9745 q^{55}-10545 q^{54}-3860 q^{53}+5739 q^{52}+14062 q^{51}+14064 q^{50}+6345 q^{49}-9153 q^{48}-20164 q^{47}-18853 q^{46}-5949 q^{45}+13461 q^{44}+25817 q^{43}+24981 q^{42}+4011 q^{41}-20582 q^{40}-33606 q^{39}-26563 q^{38}-281 q^{37}+27898 q^{36}+42963 q^{35}+25729 q^{34}-8209 q^{33}-38908 q^{32}-46125 q^{31}-21794 q^{30}+18315 q^{29}+52054 q^{28}+46125 q^{27}+10739 q^{26}-33987 q^{25}-57558 q^{24}-41701 q^{23}+3463 q^{22}+52198 q^{21}+59237 q^{20}+27904 q^{19}-24708 q^{18}-61232 q^{17}-55134 q^{16}-9724 q^{15}+48293 q^{14}+65607 q^{13}+39708 q^{12}-16293 q^{11}-61087 q^{10}-62882 q^9-19072 q^8+43936 q^7+68412 q^6+47482 q^5-9520 q^4-59520 q^3-67754 q^2-26585 q+38770+69206 q^{-1} +53985 q^{-2} -1702 q^{-3} -55314 q^{-4} -70716 q^{-5} -35066 q^{-6} +29559 q^{-7} +66002 q^{-8} +59592 q^{-9} +9892 q^{-10} -44730 q^{-11} -68900 q^{-12} -44099 q^{-13} +13888 q^{-14} +54540 q^{-15} +60275 q^{-16} +23623 q^{-17} -25874 q^{-18} -57448 q^{-19} -48179 q^{-20} -4933 q^{-21} +33670 q^{-22} +50518 q^{-23} +32154 q^{-24} -3966 q^{-25} -36090 q^{-26} -41141 q^{-27} -17708 q^{-28} +10460 q^{-29} +31009 q^{-30} +28894 q^{-31} +10489 q^{-32} -13435 q^{-33} -24716 q^{-34} -18027 q^{-35} -4160 q^{-36} +11338 q^{-37} +16738 q^{-38} +12231 q^{-39} +65 q^{-40} -8917 q^{-41} -10062 q^{-42} -6722 q^{-43} +603 q^{-44} +5509 q^{-45} +6757 q^{-46} +2925 q^{-47} -1027 q^{-48} -2934 q^{-49} -3501 q^{-50} -1529 q^{-51} +529 q^{-52} +2083 q^{-53} +1423 q^{-54} +510 q^{-55} -182 q^{-56} -934 q^{-57} -729 q^{-58} -283 q^{-59} +371 q^{-60} +290 q^{-61} +217 q^{-62} +155 q^{-63} -124 q^{-64} -165 q^{-65} -125 q^{-66} +59 q^{-67} +14 q^{-68} +28 q^{-69} +59 q^{-70} -8 q^{-71} -23 q^{-72} -31 q^{-73} +20 q^{-74} -3 q^{-75} -6 q^{-76} +14 q^{-77} - q^{-78} -2 q^{-79} -6 q^{-80} +4 q^{-81} +2 q^{-82} -3 q^{-83} + q^{-84} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 158]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 158]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[3, 10, 4, 11], X[14, 8, 15, 7], X[8, 14, 9, 13], |
|||
X[9, 2, 10, 3], X[11, 18, 12, 19], X[5, 17, 6, 16], X[17, 5, 18, 4], |
X[9, 2, 10, 3], X[11, 18, 12, 19], X[5, 17, 6, 16], X[17, 5, 18, 4], |
||
X[20, 16, 1, 15], X[19, 12, 20, 13]]</nowiki></pre></td></tr> |
X[20, 16, 1, 15], X[19, 12, 20, 13]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 158]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, 5, -2, 8, -7, -1, 3, -4, -5, 2, -6, 10, 4, -3, 9, 7, -8, |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, 5, -2, 8, -7, -1, 3, -4, -5, 2, -6, 10, 4, -3, 9, 7, -8, |
|||
6, -10, -9]</nowiki></pre></td></tr> |
6, -10, -9]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 158]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, -10, -16, 14, -2, -18, 8, 20, -4, -12]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 158]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, -2, 1, 1, 3, 2, -1, 2, 3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 158]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 158]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_158_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 158]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 158]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 10 2 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 158]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_158_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 158]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 158]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 10 2 3 |
|||
15 - t + -- - -- - 10 t + 4 t - t |
15 - t + -- - -- - 10 t + 4 t - t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 158]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 - 3 z - 2 z - z</nowiki></pre></td></tr> |
1 - 3 z - 2 z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 158]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 158]], KnotSignature[Knot[10, 158]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{45, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 158]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 6 7 2 3 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 158]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 6 7 2 3 4 |
|||
8 + q - -- + -- - - - 8 q + 6 q - 4 q + 2 q |
8 + q - -- + -- - - - 8 q + 6 q - 4 q + 2 q |
||
3 2 q |
3 2 q |
||
q q</nowiki></pre></td></tr> |
q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 158]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 158]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -10 2 -6 -4 2 2 4 6 8 10 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 158]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -10 2 -6 -4 2 2 4 6 8 10 |
|||
-2 + q - q + -- + q - q + -- + q - 2 q - q + q - q + |
-2 + q - q + -- + q - q + -- + q - 2 q - q + q - q + |
||
8 2 |
8 2 |
||
Line 146: | Line 97: | ||
12 14 |
12 14 |
||
2 q + q</nowiki></pre></td></tr> |
2 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 158]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
-4 2 2 z 2 2 4 z 2 4 6 |
-4 2 2 z 2 2 4 z 2 4 6 |
||
-2 + a + 2 a - 6 z + -- + 2 a z - 4 z + -- + a z - z |
-2 + a + 2 a - 6 z + -- + 2 a z - 4 z + -- + a z - z |
||
2 2 |
2 2 |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 158]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
-4 2 2 z z 2 5 z 2 z 2 2 |
-4 2 2 z z 2 5 z 2 z 2 2 |
||
-2 + a - 2 a + --- + - - a z + 9 z - ---- - ---- + 5 a z - |
-2 + a - 2 a + --- + - - a z + 9 z - ---- - ---- + 5 a z - |
||
Line 178: | Line 127: | ||
3 a 2 |
3 a 2 |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 158]], Vassiliev[3][Knot[10, 158]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, -1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 158]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 1 2 1 4 2 3 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 158]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 1 2 1 4 2 3 4 |
|||
- + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 4 q t + |
- + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 4 q t + |
||
q 9 4 7 3 5 3 5 2 3 2 3 q t |
q 9 4 7 3 5 3 5 2 3 2 3 q t |
||
Line 190: | Line 137: | ||
3 3 2 5 2 5 3 7 3 9 4 |
3 3 2 5 2 5 3 7 3 9 4 |
||
4 q t + 2 q t + 4 q t + 2 q t + 2 q t + 2 q t</nowiki></pre></td></tr> |
4 q t + 2 q t + 4 q t + 2 q t + 2 q t + 2 q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 158], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 3 2 8 17 2 31 36 9 58 46 24 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 3 2 8 17 2 31 36 9 58 46 24 |
|||
73 + q - --- + --- + -- - -- + -- + -- - -- - -- + -- - -- - -- - |
73 + q - --- + --- + -- - -- + -- + -- - -- - -- + -- - -- - -- - |
||
11 10 9 8 7 6 5 4 3 2 q |
11 10 9 8 7 6 5 4 3 2 q |
||
Line 202: | Line 148: | ||
10 11 12 13 |
10 11 12 13 |
||
2 q - 8 q + 2 q + q</nowiki></pre></td></tr> |
2 q - 8 q + 2 q + q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:39, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 158's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X3,10,4,11 X14,8,15,7 X8,14,9,13 X9,2,10,3 X11,18,12,19 X5,17,6,16 X17,5,18,4 X20,16,1,15 X19,12,20,13 |
Gauss code | 1, 5, -2, 8, -7, -1, 3, -4, -5, 2, -6, 10, 4, -3, 9, 7, -8, 6, -10, -9 |
Dowker-Thistlethwaite code | 6 -10 -16 14 -2 -18 8 20 -4 -12 |
Conway Notation | [-30:2:2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{2, 8}, {1, 5}, {6, 3}, {5, 9}, {8, 10}, {7, 2}, {4, 1}, {9, 6}, {3, 7}, {10, 4}] |
[edit Notes on presentations of 10 158]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 158"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X3,10,4,11 X14,8,15,7 X8,14,9,13 X9,2,10,3 X11,18,12,19 X5,17,6,16 X17,5,18,4 X20,16,1,15 X19,12,20,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, 5, -2, 8, -7, -1, 3, -4, -5, 2, -6, 10, 4, -3, 9, 7, -8, 6, -10, -9 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 -10 -16 14 -2 -18 8 20 -4 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[-30:2:2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{2, 8}, {1, 5}, {6, 3}, {5, 9}, {8, 10}, {7, 2}, {4, 1}, {9, 6}, {3, 7}, {10, 4}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 158"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 45, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 158"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-3, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 158. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|