10 157
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 157's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1627 X10,4,11,3 X16,11,17,12 X7,15,8,14 X15,9,16,8 X13,1,14,20 X19,13,20,12 X18,6,19,5 X2,10,3,9 X4,18,5,17 |
Gauss code | -1, -9, 2, -10, 8, 1, -4, 5, 9, -2, 3, 7, -6, 4, -5, -3, 10, -8, -7, 6 |
Dowker-Thistlethwaite code | 6 -10 -18 14 -2 -16 20 8 -4 12 |
Conway Notation | [-3:20:20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
![]() |
![]() [{4, 10}, {6, 9}, {5, 8}, {3, 6}, {11, 4}, {9, 2}, {10, 7}, {8, 3}, {7, 1}, {2, 11}, {1, 5}] |
[edit Notes on presentations of 10 157]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 157"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X10,4,11,3 X16,11,17,12 X7,15,8,14 X15,9,16,8 X13,1,14,20 X19,13,20,12 X18,6,19,5 X2,10,3,9 X4,18,5,17 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, -9, 2, -10, 8, 1, -4, 5, 9, -2, 3, 7, -6, 4, -5, -3, 10, -8, -7, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 -10 -18 14 -2 -16 20 8 -4 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[-3:20:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(3,\{1,1,1,2,2,-1,2,-1,2,2\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
![]() |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{4, 10}, {6, 9}, {5, 8}, {3, 6}, {11, 4}, {9, 2}, {10, 7}, {8, 3}, {7, 1}, {2, 11}, {1, 5}] |
In[14]:=
|
Draw[ap]
|
![]() |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+6 t^2-11 t+13-11 t^{-1} +6 t^{-2} - t^{-3} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+4 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{7,t+1\}} |
Determinant and Signature | { 49, 4 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}-4 q^9+6 q^8-8 q^7+9 q^6-8 q^5+7 q^4-4 q^3+2 q^2} |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-6} +z^8 a^{-8} +z^7 a^{-5} +5 z^7 a^{-7} +4 z^7 a^{-9} +2 z^6 a^{-6} +8 z^6 a^{-8} +6 z^6 a^{-10} +z^5 a^{-5} -3 z^5 a^{-7} +4 z^5 a^{-11} +3 z^4 a^{-4} -3 z^4 a^{-6} -15 z^4 a^{-8} -8 z^4 a^{-10} +z^4 a^{-12} -2 z^3 a^{-5} -6 z^3 a^{-7} -8 z^3 a^{-9} -4 z^3 a^{-11} -5 z^2 a^{-4} +7 z^2 a^{-8} +2 z^2 a^{-10} +4 z a^{-7} +4 z a^{-9} +2 a^{-4} - a^{-8} } |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-6} - q^{-8} +2 q^{-10} +3 q^{-16} - q^{-18} +2 q^{-20} -2 q^{-22} - q^{-24} -2 q^{-28} + q^{-30} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-28} -2 q^{-32} +12 q^{-34} -18 q^{-36} +19 q^{-38} -9 q^{-40} -10 q^{-42} +42 q^{-44} -60 q^{-46} +66 q^{-48} -44 q^{-50} -4 q^{-52} +56 q^{-54} -96 q^{-56} +101 q^{-58} -67 q^{-60} +7 q^{-62} +49 q^{-64} -79 q^{-66} +74 q^{-68} -31 q^{-70} -19 q^{-72} +61 q^{-74} -66 q^{-76} +37 q^{-78} +18 q^{-80} -70 q^{-82} +105 q^{-84} -99 q^{-86} +61 q^{-88} +4 q^{-90} -72 q^{-92} +119 q^{-94} -134 q^{-96} +99 q^{-98} -38 q^{-100} -37 q^{-102} +85 q^{-104} -102 q^{-106} +73 q^{-108} -17 q^{-110} -38 q^{-112} +64 q^{-114} -58 q^{-116} +13 q^{-118} +43 q^{-120} -81 q^{-122} +85 q^{-124} -51 q^{-126} +52 q^{-130} -83 q^{-132} +85 q^{-134} -59 q^{-136} +20 q^{-138} +14 q^{-140} -40 q^{-142} +45 q^{-144} -34 q^{-146} +22 q^{-148} -5 q^{-150} -4 q^{-152} +8 q^{-154} -10 q^{-156} +6 q^{-158} -3 q^{-160} + q^{-162} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-3} -2 q^{-5} +3 q^{-7} - q^{-9} + q^{-11} + q^{-13} -2 q^{-15} +2 q^{-17} -3 q^{-19} + q^{-21} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} +3 q^{-6} -5 q^{-8} -3 q^{-10} +14 q^{-12} -4 q^{-14} -14 q^{-16} +18 q^{-18} +3 q^{-20} -18 q^{-22} +10 q^{-24} +8 q^{-26} -11 q^{-28} -2 q^{-30} +8 q^{-32} +2 q^{-34} -14 q^{-36} +4 q^{-38} +14 q^{-40} -18 q^{-42} -3 q^{-44} +19 q^{-46} -9 q^{-48} -7 q^{-50} +10 q^{-52} - q^{-54} -3 q^{-56} + q^{-58} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-5} +2 q^{-7} -12 q^{-11} -4 q^{-13} +20 q^{-15} +25 q^{-17} -19 q^{-19} -51 q^{-21} +9 q^{-23} +75 q^{-25} +19 q^{-27} -86 q^{-29} -54 q^{-31} +86 q^{-33} +82 q^{-35} -68 q^{-37} -100 q^{-39} +41 q^{-41} +105 q^{-43} -16 q^{-45} -96 q^{-47} -5 q^{-49} +79 q^{-51} +25 q^{-53} -59 q^{-55} -46 q^{-57} +34 q^{-59} +59 q^{-61} -9 q^{-63} -79 q^{-65} -19 q^{-67} +88 q^{-69} +56 q^{-71} -89 q^{-73} -81 q^{-75} +73 q^{-77} +101 q^{-79} -45 q^{-81} -105 q^{-83} +15 q^{-85} +91 q^{-87} +10 q^{-89} -62 q^{-91} -22 q^{-93} +34 q^{-95} +21 q^{-97} -19 q^{-99} -11 q^{-101} +5 q^{-103} +7 q^{-105} - q^{-107} -3 q^{-109} + q^{-111} } |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 157"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+6 t^2-11 t+13-11 t^{-1} +6 t^{-2} - t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+4 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{7,t+1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 49, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}-4 q^9+6 q^8-8 q^7+9 q^6-8 q^5+7 q^4-4 q^3+2 q^2} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-6} +z^8 a^{-8} +z^7 a^{-5} +5 z^7 a^{-7} +4 z^7 a^{-9} +2 z^6 a^{-6} +8 z^6 a^{-8} +6 z^6 a^{-10} +z^5 a^{-5} -3 z^5 a^{-7} +4 z^5 a^{-11} +3 z^4 a^{-4} -3 z^4 a^{-6} -15 z^4 a^{-8} -8 z^4 a^{-10} +z^4 a^{-12} -2 z^3 a^{-5} -6 z^3 a^{-7} -8 z^3 a^{-9} -4 z^3 a^{-11} -5 z^2 a^{-4} +7 z^2 a^{-8} +2 z^2 a^{-10} +4 z a^{-7} +4 z a^{-9} +2 a^{-4} - a^{-8} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 157"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (4, 8) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 10 157. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-4 q^{27}+2 q^{26}+12 q^{25}-21 q^{24}+40 q^{22}-43 q^{21}-15 q^{20}+72 q^{19}-53 q^{18}-33 q^{17}+88 q^{16}-47 q^{15}-43 q^{14}+79 q^{13}-28 q^{12}-41 q^{11}+51 q^{10}-7 q^9-26 q^8+19 q^7+3 q^6-8 q^5+2 q^4+q^3} |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}-4 q^{53}+2 q^{52}+8 q^{51}-q^{50}-20 q^{49}-6 q^{48}+48 q^{47}+12 q^{46}-76 q^{45}-46 q^{44}+120 q^{43}+93 q^{42}-152 q^{41}-166 q^{40}+180 q^{39}+239 q^{38}-180 q^{37}-320 q^{36}+172 q^{35}+384 q^{34}-148 q^{33}-427 q^{32}+112 q^{31}+454 q^{30}-80 q^{29}-452 q^{28}+32 q^{27}+441 q^{26}+4 q^{25}-398 q^{24}-52 q^{23}+350 q^{22}+84 q^{21}-277 q^{20}-116 q^{19}+209 q^{18}+116 q^{17}-127 q^{16}-112 q^{15}+69 q^{14}+84 q^{13}-22 q^{12}-56 q^{11}+3 q^{10}+24 q^9+10 q^8-12 q^7-2 q^6+2 q^4} |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{88}-4 q^{87}+2 q^{86}+8 q^{85}-5 q^{84}-26 q^{82}+12 q^{81}+49 q^{80}-7 q^{79}-8 q^{78}-128 q^{77}+10 q^{76}+190 q^{75}+77 q^{74}-6 q^{73}-427 q^{72}-144 q^{71}+418 q^{70}+425 q^{69}+212 q^{68}-910 q^{67}-676 q^{66}+470 q^{65}+1014 q^{64}+867 q^{63}-1256 q^{62}-1492 q^{61}+94 q^{60}+1491 q^{59}+1803 q^{58}-1204 q^{57}-2184 q^{56}-555 q^{55}+1597 q^{54}+2587 q^{53}-857 q^{52}-2482 q^{51}-1143 q^{50}+1399 q^{49}+2981 q^{48}-434 q^{47}-2416 q^{46}-1523 q^{45}+1034 q^{44}+3000 q^{43}+8 q^{42}-2064 q^{41}-1729 q^{40}+527 q^{39}+2696 q^{38}+468 q^{37}-1448 q^{36}-1728 q^{35}-79 q^{34}+2050 q^{33}+815 q^{32}-651 q^{31}-1408 q^{30}-569 q^{29}+1159 q^{28}+822 q^{27}+35 q^{26}-798 q^{25}-666 q^{24}+357 q^{23}+482 q^{22}+301 q^{21}-224 q^{20}-397 q^{19}-25 q^{18}+118 q^{17}+193 q^{16}+24 q^{15}-107 q^{14}-51 q^{13}-16 q^{12}+42 q^{11}+26 q^{10}-5 q^9-6 q^8-8 q^7+2 q^5+q^4} |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{130}-4 q^{129}+2 q^{128}+8 q^{127}-5 q^{126}-4 q^{125}-6 q^{124}-8 q^{123}+13 q^{122}+40 q^{121}+7 q^{120}-48 q^{119}-68 q^{118}-36 q^{117}+78 q^{116}+176 q^{115}+129 q^{114}-144 q^{113}-396 q^{112}-296 q^{111}+160 q^{110}+692 q^{109}+758 q^{108}-32 q^{107}-1179 q^{106}-1484 q^{105}-360 q^{104}+1536 q^{103}+2631 q^{102}+1328 q^{101}-1790 q^{100}-4008 q^{99}-2845 q^{98}+1456 q^{97}+5463 q^{96}+5012 q^{95}-525 q^{94}-6636 q^{93}-7500 q^{92}-1220 q^{91}+7330 q^{90}+10060 q^{89}+3465 q^{88}-7288 q^{87}-12315 q^{86}-6064 q^{85}+6636 q^{84}+14056 q^{83}+8554 q^{82}-5472 q^{81}-15120 q^{80}-10780 q^{79}+4067 q^{78}+15596 q^{77}+12534 q^{76}-2640 q^{75}-15570 q^{74}-13752 q^{73}+1245 q^{72}+15184 q^{71}+14605 q^{70}-36 q^{69}-14562 q^{68}-15012 q^{67}-1153 q^{66}+13668 q^{65}+15268 q^{64}+2264 q^{63}-12593 q^{62}-15168 q^{61}-3474 q^{60}+11160 q^{59}+14932 q^{58}+4676 q^{57}-9438 q^{56}-14260 q^{55}-5929 q^{54}+7328 q^{53}+13278 q^{52}+6968 q^{51}-4999 q^{50}-11680 q^{49}-7766 q^{48}+2536 q^{47}+9739 q^{46}+7944 q^{45}-277 q^{44}-7304 q^{43}-7553 q^{42}-1616 q^{41}+4886 q^{40}+6480 q^{39}+2752 q^{38}-2520 q^{37}-4995 q^{36}-3196 q^{35}+731 q^{34}+3312 q^{33}+2912 q^{32}+472 q^{31}-1811 q^{30}-2228 q^{29}-931 q^{28}+644 q^{27}+1392 q^{26}+968 q^{25}-31 q^{24}-692 q^{23}-645 q^{22}-244 q^{21}+206 q^{20}+392 q^{19}+208 q^{18}-20 q^{17}-119 q^{16}-132 q^{15}-56 q^{14}+40 q^{13}+50 q^{12}+20 q^{11}+12 q^{10}-12 q^9-12 q^8-4 q^7+2 q^6+2 q^4} |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{180}-4 q^{179}+2 q^{178}+8 q^{177}-5 q^{176}-4 q^{175}-10 q^{174}+12 q^{173}-7 q^{172}+4 q^{171}+54 q^{170}-23 q^{169}-42 q^{168}-72 q^{167}+22 q^{166}+18 q^{165}+82 q^{164}+242 q^{163}-33 q^{162}-233 q^{161}-432 q^{160}-122 q^{159}+44 q^{158}+532 q^{157}+1136 q^{156}+375 q^{155}-635 q^{154}-1858 q^{153}-1498 q^{152}-738 q^{151}+1514 q^{150}+4165 q^{149}+3305 q^{148}+245 q^{147}-4664 q^{146}-6522 q^{145}-5907 q^{144}+492 q^{143}+9607 q^{142}+12440 q^{141}+7851 q^{140}-4772 q^{139}-15172 q^{138}-20327 q^{137}-10039 q^{136}+11363 q^{135}+26952 q^{134}+27751 q^{133}+7321 q^{132}-19168 q^{131}-41613 q^{130}-35477 q^{129}-1507 q^{128}+36190 q^{127}+55289 q^{126}+36015 q^{125}-7024 q^{124}-56897 q^{123}-68439 q^{122}-31478 q^{121}+28728 q^{120}+75833 q^{119}+71323 q^{118}+21409 q^{117}-55373 q^{116}-93295 q^{115}-66512 q^{114}+6293 q^{113}+79713 q^{112}+97693 q^{111}+53183 q^{110}-40029 q^{109}-101865 q^{108}-92216 q^{107}-18737 q^{106}+70654 q^{105}+108799 q^{104}+76099 q^{103}-21737 q^{102}-98220 q^{101}-104362 q^{100}-37053 q^{99}+57754 q^{98}+108943 q^{97}+88039 q^{96}-7037 q^{95}-89700 q^{94}-107403 q^{93}-48452 q^{92}+45298 q^{91}+104011 q^{90}+93541 q^{89}+5215 q^{88}-78860 q^{87}-106041 q^{86}-57406 q^{85}+31280 q^{84}+95245 q^{83}+96289 q^{82}+19181 q^{81}-63132 q^{80}-100371 q^{79}-66484 q^{78}+12007 q^{77}+79493 q^{76}+95107 q^{75}+36077 q^{74}-39273 q^{73}-86366 q^{72}-72738 q^{71}-12199 q^{70}+53631 q^{69}+84565 q^{68}+50703 q^{67}-9097 q^{66}-60604 q^{65}-68737 q^{64}-33761 q^{63}+20663 q^{62}+60674 q^{61}+53494 q^{60}+17637 q^{59}-27130 q^{58}-49863 q^{57}-41435 q^{56}-7905 q^{55}+28632 q^{54}+39725 q^{53}+28729 q^{52}+1116 q^{51}-22563 q^{50}-31324 q^{49}-19813 q^{48}+2516 q^{47}+17447 q^{46}+21868 q^{45}+12529 q^{44}-1437 q^{43}-13298 q^{42}-14847 q^{41}-7415 q^{40}+1217 q^{39}+8362 q^{38}+9085 q^{37}+5334 q^{36}-1188 q^{35}-5035 q^{34}-5090 q^{33}-3104 q^{32}+352 q^{31}+2537 q^{30}+3116 q^{29}+1525 q^{28}-85 q^{27}-1102 q^{26}-1458 q^{25}-879 q^{24}-117 q^{23}+572 q^{22}+554 q^{21}+384 q^{20}+116 q^{19}-152 q^{18}-227 q^{17}-174 q^{16}-24 q^{15}+24 q^{14}+56 q^{13}+52 q^{12}+26 q^{11}-5 q^{10}-16 q^9-8 q^8-6 q^7+2 q^4+q^3} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|