10 156
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 156's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X4251 X12,4,13,3 X7,14,8,15 X18,9,19,10 X6,19,7,20 X16,5,17,6 X10,17,11,18 X13,8,14,9 X20,15,1,16 X2,12,3,11 |
| Gauss code | 1, -10, 2, -1, 6, -5, -3, 8, 4, -7, 10, -2, -8, 3, 9, -6, 7, -4, 5, -9 |
| Dowker-Thistlethwaite code | 4 12 16 -14 18 2 -8 20 10 6 |
| Conway Notation | [-3:2:20] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{3, 10}, {2, 4}, {1, 3}, {8, 11}, {9, 5}, {10, 7}, {4, 8}, {6, 9}, {7, 2}, {11, 6}, {5, 1}] |
[edit Notes on presentations of 10 156]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 156"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X12,4,13,3 X7,14,8,15 X18,9,19,10 X6,19,7,20 X16,5,17,6 X10,17,11,18 X13,8,14,9 X20,15,1,16 X2,12,3,11 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, 6, -5, -3, 8, 4, -7, 10, -2, -8, 3, 9, -6, 7, -4, 5, -9 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 16 -14 18 2 -8 20 10 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[-3:2:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
[math]\displaystyle{ \textrm{BR}(4,\{-1,-1,-1,2,1,1,-3,-2,1,-2,-3\}) }[/math] |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 10}, {2, 4}, {1, 3}, {8, 11}, {9, 5}, {10, 7}, {4, 8}, {6, 9}, {7, 2}, {11, 6}, {5, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^3-4 t^2+8 t-9+8 t^{-1} -4 t^{-2} + t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^6+2 z^4+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 35, -2 } |
| Jones polynomial | [math]\displaystyle{ -q^2+3 q-4+6 q^{-1} -6 q^{-2} +6 q^{-3} -5 q^{-4} +3 q^{-5} - q^{-6} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ a^2 z^6-a^4 z^4+4 a^2 z^4-z^4-2 a^4 z^2+5 a^2 z^2-2 z^2-a^4+2 a^2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^4 z^8+a^2 z^8+a^5 z^7+4 a^3 z^7+3 a z^7-a^4 z^6+2 a^2 z^6+3 z^6-a^5 z^5-9 a^3 z^5-7 a z^5+z^5 a^{-1} +3 a^6 z^4+2 a^4 z^4-9 a^2 z^4-8 z^4+a^7 z^3+4 a^5 z^3+8 a^3 z^3+3 a z^3-2 z^3 a^{-1} -2 a^6 z^2+a^4 z^2+7 a^2 z^2+4 z^2-a^7 z-2 a^5 z-2 a^3 z-a z-a^4-2 a^2 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{18}+q^{16}-q^{14}+q^{10}-q^8+2 q^6-q^4+2 q^2+1+ q^{-4} - q^{-6} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{100}-q^{98}+q^{96}-2 q^{90}+2 q^{88}+2 q^{86}-6 q^{84}+11 q^{82}-16 q^{80}+10 q^{78}-3 q^{76}-13 q^{74}+29 q^{72}-35 q^{70}+27 q^{68}-8 q^{66}-16 q^{64}+35 q^{62}-36 q^{60}+23 q^{58}-20 q^{54}+28 q^{52}-21 q^{50}+2 q^{48}+21 q^{46}-34 q^{44}+32 q^{42}-18 q^{40}-5 q^{38}+27 q^{36}-42 q^{34}+42 q^{32}-31 q^{30}+11 q^{28}+15 q^{26}-35 q^{24}+44 q^{22}-33 q^{20}+15 q^{18}+10 q^{16}-28 q^{14}+31 q^{12}-16 q^{10}-3 q^8+25 q^6-32 q^4+24 q^2-1-22 q^{-2} +36 q^{-4} -35 q^{-6} +22 q^{-8} -3 q^{-10} -16 q^{-12} +25 q^{-14} -22 q^{-16} +16 q^{-18} -5 q^{-20} -3 q^{-22} +5 q^{-24} -7 q^{-26} +4 q^{-28} -2 q^{-30} + q^{-32} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^{13}+2 q^{11}-2 q^9+q^7+2 q- q^{-1} +2 q^{-3} - q^{-5} }[/math] |
| 2 | [math]\displaystyle{ -2 q^{34}+2 q^{32}+5 q^{30}-7 q^{28}-2 q^{26}+10 q^{24}-6 q^{22}-6 q^{20}+8 q^{18}-5 q^{14}+q^{12}+5 q^{10}-3 q^8-5 q^6+8 q^4+2 q^2-8+6 q^{-2} +6 q^{-4} -8 q^{-6} - q^{-8} +6 q^{-10} -2 q^{-12} -2 q^{-14} + q^{-16} }[/math] |
| 3 | [math]\displaystyle{ q^{71}-q^{67}-5 q^{65}-q^{63}+11 q^{61}+9 q^{59}-10 q^{57}-24 q^{55}+6 q^{53}+35 q^{51}+4 q^{49}-40 q^{47}-22 q^{45}+39 q^{43}+34 q^{41}-28 q^{39}-36 q^{37}+14 q^{35}+35 q^{33}-q^{31}-28 q^{29}-11 q^{27}+20 q^{25}+17 q^{23}-13 q^{21}-27 q^{19}+7 q^{17}+33 q^{15}-39 q^{11}-5 q^9+42 q^7+18 q^5-37 q^3-29 q+30 q^{-1} +35 q^{-3} -12 q^{-5} -37 q^{-7} -3 q^{-9} +30 q^{-11} +15 q^{-13} -16 q^{-15} -18 q^{-17} +3 q^{-19} +14 q^{-21} + q^{-23} -6 q^{-25} -3 q^{-27} +2 q^{-29} +2 q^{-31} - q^{-33} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ -q^{18}+q^{16}-q^{14}+q^{10}-q^8+2 q^6-q^4+2 q^2+1+ q^{-4} - q^{-6} }[/math] |
| 1,1 | [math]\displaystyle{ q^{52}-2 q^{50}-2 q^{48}+2 q^{46}+2 q^{44}-4 q^{42}+18 q^{40}-36 q^{38}+62 q^{36}-90 q^{34}+104 q^{32}-114 q^{30}+99 q^{28}-68 q^{26}+26 q^{24}+32 q^{22}-84 q^{20}+132 q^{18}-170 q^{16}+186 q^{14}-194 q^{12}+176 q^{10}-138 q^8+94 q^6-32 q^4-16 q^2+70-96 q^{-2} +107 q^{-4} -104 q^{-6} +84 q^{-8} -62 q^{-10} +40 q^{-12} -22 q^{-14} +10 q^{-16} -4 q^{-18} + q^{-20} }[/math] |
| 2,0 | [math]\displaystyle{ -q^{48}+q^{42}+3 q^{40}-2 q^{38}-q^{36}+q^{34}+2 q^{32}-2 q^{30}-5 q^{28}+3 q^{26}+q^{24}-3 q^{22}-q^{20}+3 q^{18}-q^{16}-q^{14}+2 q^{12}+q^6+5 q^4-q^2+5 q^{-2} + q^{-4} -4 q^{-6} - q^{-8} +2 q^{-10} + q^{-12} -2 q^{-14} - q^{-16} + q^{-18} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{42}-q^{40}-q^{38}+4 q^{36}-3 q^{34}-4 q^{32}+7 q^{30}-4 q^{28}-4 q^{26}+6 q^{24}-3 q^{22}-2 q^{20}+2 q^{18}+q^{16}-q^{12}+3 q^{10}+3 q^8-5 q^6+3 q^4+6 q^2-5+3 q^{-2} +4 q^{-4} -5 q^{-6} +2 q^{-8} -2 q^{-12} + q^{-14} }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{23}+q^{21}-2 q^{19}+q^{17}-q^{15}+q^{13}+q^9+q^7+2 q^3+2 q^{-1} - q^{-3} + q^{-5} - q^{-7} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ 2 q^{52}-q^{50}-2 q^{48}+4 q^{46}+q^{44}-6 q^{42}+4 q^{38}-4 q^{36}-6 q^{34}+3 q^{32}+3 q^{30}-5 q^{28}+8 q^{24}-3 q^{22}-5 q^{20}+8 q^{18}-6 q^{14}+4 q^{12}+7 q^{10}-3 q^8-q^6+6 q^4+4 q^2-3+ q^{-2} +4 q^{-4} -2 q^{-6} -2 q^{-8} + q^{-10} - q^{-12} - q^{-14} + q^{-16} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^{28}+q^{26}-2 q^{24}-q^{18}+q^{16}+2 q^{12}+2 q^8+2 q^4+1+ q^{-2} - q^{-4} + q^{-6} - q^{-8} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{42}+q^{40}-3 q^{38}+6 q^{36}-7 q^{34}+8 q^{32}-7 q^{30}+6 q^{28}-4 q^{26}+3 q^{22}-8 q^{20}+10 q^{18}-13 q^{16}+14 q^{14}-13 q^{12}+13 q^{10}-7 q^8+5 q^6+q^4-2 q^2+5-7 q^{-2} +8 q^{-4} -7 q^{-6} +6 q^{-8} -4 q^{-10} +2 q^{-12} - q^{-14} }[/math] |
| 1,0 | [math]\displaystyle{ q^{68}-q^{64}-2 q^{62}+5 q^{58}+2 q^{56}-5 q^{54}-6 q^{52}+2 q^{50}+8 q^{48}+q^{46}-8 q^{44}-4 q^{42}+6 q^{40}+5 q^{38}-4 q^{36}-6 q^{34}+2 q^{32}+6 q^{30}-6 q^{26}-q^{24}+5 q^{22}+3 q^{20}-3 q^{18}-4 q^{16}+4 q^{14}+5 q^{12}-2 q^{10}-7 q^8+2 q^6+8 q^4+4 q^2-6-6 q^{-2} +5 q^{-4} +8 q^{-6} - q^{-8} -6 q^{-10} -2 q^{-12} +4 q^{-14} +2 q^{-16} -2 q^{-18} -2 q^{-20} + q^{-24} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{58}-q^{56}+q^{54}-2 q^{52}+5 q^{50}-6 q^{48}+4 q^{46}-6 q^{44}+7 q^{42}-6 q^{40}+3 q^{38}-4 q^{36}+q^{34}+2 q^{32}-4 q^{30}+4 q^{28}-8 q^{26}+10 q^{24}-9 q^{22}+11 q^{20}-10 q^{18}+11 q^{16}-7 q^{14}+9 q^{12}-5 q^{10}+3 q^8+q^6+3 q^2-3+7 q^{-2} -6 q^{-4} +6 q^{-6} -6 q^{-8} +5 q^{-10} -4 q^{-12} +2 q^{-14} -2 q^{-16} + q^{-18} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{100}-q^{98}+q^{96}-2 q^{90}+2 q^{88}+2 q^{86}-6 q^{84}+11 q^{82}-16 q^{80}+10 q^{78}-3 q^{76}-13 q^{74}+29 q^{72}-35 q^{70}+27 q^{68}-8 q^{66}-16 q^{64}+35 q^{62}-36 q^{60}+23 q^{58}-20 q^{54}+28 q^{52}-21 q^{50}+2 q^{48}+21 q^{46}-34 q^{44}+32 q^{42}-18 q^{40}-5 q^{38}+27 q^{36}-42 q^{34}+42 q^{32}-31 q^{30}+11 q^{28}+15 q^{26}-35 q^{24}+44 q^{22}-33 q^{20}+15 q^{18}+10 q^{16}-28 q^{14}+31 q^{12}-16 q^{10}-3 q^8+25 q^6-32 q^4+24 q^2-1-22 q^{-2} +36 q^{-4} -35 q^{-6} +22 q^{-8} -3 q^{-10} -16 q^{-12} +25 q^{-14} -22 q^{-16} +16 q^{-18} -5 q^{-20} -3 q^{-22} +5 q^{-24} -7 q^{-26} +4 q^{-28} -2 q^{-30} + q^{-32} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 156"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^3-4 t^2+8 t-9+8 t^{-1} -4 t^{-2} + t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^6+2 z^4+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 35, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^2+3 q-4+6 q^{-1} -6 q^{-2} +6 q^{-3} -5 q^{-4} +3 q^{-5} - q^{-6} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ a^2 z^6-a^4 z^4+4 a^2 z^4-z^4-2 a^4 z^2+5 a^2 z^2-2 z^2-a^4+2 a^2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^4 z^8+a^2 z^8+a^5 z^7+4 a^3 z^7+3 a z^7-a^4 z^6+2 a^2 z^6+3 z^6-a^5 z^5-9 a^3 z^5-7 a z^5+z^5 a^{-1} +3 a^6 z^4+2 a^4 z^4-9 a^2 z^4-8 z^4+a^7 z^3+4 a^5 z^3+8 a^3 z^3+3 a z^3-2 z^3 a^{-1} -2 a^6 z^2+a^4 z^2+7 a^2 z^2+4 z^2-a^7 z-2 a^5 z-2 a^3 z-a z-a^4-2 a^2 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_16, K11n15, K11n56, K11n58,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {8_16,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 156"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^3-4 t^2+8 t-9+8 t^{-1} -4 t^{-2} + t^{-3} }[/math], [math]\displaystyle{ -q^2+3 q-4+6 q^{-1} -6 q^{-2} +6 q^{-3} -5 q^{-4} +3 q^{-5} - q^{-6} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{8_16, K11n15, K11n56, K11n58,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{8_16,} |
Vassiliev invariants
| V2 and V3: | (1, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of 10 156. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| [math]\displaystyle{ n }[/math] | [math]\displaystyle{ J_n }[/math] |
| 2 | [math]\displaystyle{ q^7-3 q^6+9 q^4-10 q^3-7 q^2+23 q-10-21 q^{-1} +33 q^{-2} -4 q^{-3} -34 q^{-4} +35 q^{-5} +4 q^{-6} -38 q^{-7} +29 q^{-8} +9 q^{-9} -30 q^{-10} +15 q^{-11} +9 q^{-12} -14 q^{-13} +3 q^{-14} +4 q^{-15} -2 q^{-16} }[/math] |
| 3 | [math]\displaystyle{ -q^{15}+3 q^{14}-5 q^{12}-4 q^{11}+10 q^{10}+13 q^9-16 q^8-25 q^7+12 q^6+44 q^5-q^4-58 q^3-22 q^2+69 q+46-63 q^{-1} -81 q^{-2} +61 q^{-3} +101 q^{-4} -39 q^{-5} -128 q^{-6} +27 q^{-7} +140 q^{-8} -6 q^{-9} -154 q^{-10} -7 q^{-11} +154 q^{-12} +24 q^{-13} -151 q^{-14} -38 q^{-15} +137 q^{-16} +51 q^{-17} -115 q^{-18} -59 q^{-19} +87 q^{-20} +59 q^{-21} -53 q^{-22} -54 q^{-23} +26 q^{-24} +41 q^{-25} -9 q^{-26} -23 q^{-27} -3 q^{-28} +11 q^{-29} +5 q^{-30} -4 q^{-31} - q^{-32} - q^{-33} + q^{-34} }[/math] |
| 4 | [math]\displaystyle{ q^{26}-3 q^{25}+5 q^{23}+4 q^{21}-17 q^{20}-6 q^{19}+17 q^{18}+11 q^{17}+31 q^{16}-46 q^{15}-47 q^{14}+5 q^{13}+27 q^{12}+121 q^{11}-25 q^{10}-96 q^9-89 q^8-50 q^7+222 q^6+108 q^5-26 q^4-189 q^3-268 q^2+183 q+253+208 q^{-1} -148 q^{-2} -510 q^{-3} -21 q^{-4} +273 q^{-5} +477 q^{-6} +34 q^{-7} -646 q^{-8} -267 q^{-9} +180 q^{-10} +667 q^{-11} +238 q^{-12} -677 q^{-13} -453 q^{-14} +66 q^{-15} +763 q^{-16} +390 q^{-17} -646 q^{-18} -572 q^{-19} -38 q^{-20} +782 q^{-21} +498 q^{-22} -549 q^{-23} -624 q^{-24} -159 q^{-25} +689 q^{-26} +566 q^{-27} -348 q^{-28} -572 q^{-29} -289 q^{-30} +458 q^{-31} +533 q^{-32} -89 q^{-33} -378 q^{-34} -332 q^{-35} +163 q^{-36} +357 q^{-37} +83 q^{-38} -132 q^{-39} -228 q^{-40} -22 q^{-41} +135 q^{-42} +86 q^{-43} +8 q^{-44} -78 q^{-45} -44 q^{-46} +16 q^{-47} +25 q^{-48} +19 q^{-49} -7 q^{-50} -11 q^{-51} -2 q^{-52} +3 q^{-54} + q^{-55} - q^{-56} }[/math] |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




