|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 42: |
Line 45: |
|
coloured_jones_3 = <math>-q^{30}+4 q^{29}-4 q^{28}-6 q^{27}+8 q^{26}+23 q^{25}-21 q^{24}-68 q^{23}+41 q^{22}+156 q^{21}-36 q^{20}-312 q^{19}-34 q^{18}+538 q^{17}+197 q^{16}-774 q^{15}-501 q^{14}+978 q^{13}+926 q^{12}-1100 q^{11}-1406 q^{10}+1085 q^9+1901 q^8-962 q^7-2322 q^6+733 q^5+2658 q^4-470 q^3-2840 q^2+148 q+2923+148 q^{-1} -2840 q^{-2} -470 q^{-3} +2658 q^{-4} +733 q^{-5} -2322 q^{-6} -962 q^{-7} +1901 q^{-8} +1085 q^{-9} -1406 q^{-10} -1100 q^{-11} +926 q^{-12} +978 q^{-13} -501 q^{-14} -774 q^{-15} +197 q^{-16} +538 q^{-17} -34 q^{-18} -312 q^{-19} -36 q^{-20} +156 q^{-21} +41 q^{-22} -68 q^{-23} -21 q^{-24} +23 q^{-25} +8 q^{-26} -6 q^{-27} -4 q^{-28} +4 q^{-29} - q^{-30} </math> | |
|
coloured_jones_3 = <math>-q^{30}+4 q^{29}-4 q^{28}-6 q^{27}+8 q^{26}+23 q^{25}-21 q^{24}-68 q^{23}+41 q^{22}+156 q^{21}-36 q^{20}-312 q^{19}-34 q^{18}+538 q^{17}+197 q^{16}-774 q^{15}-501 q^{14}+978 q^{13}+926 q^{12}-1100 q^{11}-1406 q^{10}+1085 q^9+1901 q^8-962 q^7-2322 q^6+733 q^5+2658 q^4-470 q^3-2840 q^2+148 q+2923+148 q^{-1} -2840 q^{-2} -470 q^{-3} +2658 q^{-4} +733 q^{-5} -2322 q^{-6} -962 q^{-7} +1901 q^{-8} +1085 q^{-9} -1406 q^{-10} -1100 q^{-11} +926 q^{-12} +978 q^{-13} -501 q^{-14} -774 q^{-15} +197 q^{-16} +538 q^{-17} -34 q^{-18} -312 q^{-19} -36 q^{-20} +156 q^{-21} +41 q^{-22} -68 q^{-23} -21 q^{-24} +23 q^{-25} +8 q^{-26} -6 q^{-27} -4 q^{-28} +4 q^{-29} - q^{-30} </math> | |
|
coloured_jones_4 = <math>q^{50}-4 q^{49}+4 q^{48}+6 q^{47}-13 q^{46}+2 q^{45}-15 q^{44}+40 q^{43}+49 q^{42}-94 q^{41}-61 q^{40}-89 q^{39}+246 q^{38}+385 q^{37}-253 q^{36}-518 q^{35}-744 q^{34}+642 q^{33}+1807 q^{32}+368 q^{31}-1400 q^{30}-3385 q^{29}-217 q^{28}+4490 q^{27}+3818 q^{26}-590 q^{25}-8228 q^{24}-5045 q^{23}+5642 q^{22}+10246 q^{21}+5143 q^{20}-11875 q^{19}-13751 q^{18}+1667 q^{17}+15820 q^{16}+15318 q^{15}-10566 q^{14}-22033 q^{13}-6857 q^{12}+16840 q^{11}+25391 q^{10}-4814 q^9-26115 q^8-15813 q^7+13604 q^6+31686 q^5+2140 q^4-25795 q^3-22277 q^2+8365 q+33665+8365 q^{-1} -22277 q^{-2} -25795 q^{-3} +2140 q^{-4} +31686 q^{-5} +13604 q^{-6} -15813 q^{-7} -26115 q^{-8} -4814 q^{-9} +25391 q^{-10} +16840 q^{-11} -6857 q^{-12} -22033 q^{-13} -10566 q^{-14} +15318 q^{-15} +15820 q^{-16} +1667 q^{-17} -13751 q^{-18} -11875 q^{-19} +5143 q^{-20} +10246 q^{-21} +5642 q^{-22} -5045 q^{-23} -8228 q^{-24} -590 q^{-25} +3818 q^{-26} +4490 q^{-27} -217 q^{-28} -3385 q^{-29} -1400 q^{-30} +368 q^{-31} +1807 q^{-32} +642 q^{-33} -744 q^{-34} -518 q^{-35} -253 q^{-36} +385 q^{-37} +246 q^{-38} -89 q^{-39} -61 q^{-40} -94 q^{-41} +49 q^{-42} +40 q^{-43} -15 q^{-44} +2 q^{-45} -13 q^{-46} +6 q^{-47} +4 q^{-48} -4 q^{-49} + q^{-50} </math> | |
|
coloured_jones_4 = <math>q^{50}-4 q^{49}+4 q^{48}+6 q^{47}-13 q^{46}+2 q^{45}-15 q^{44}+40 q^{43}+49 q^{42}-94 q^{41}-61 q^{40}-89 q^{39}+246 q^{38}+385 q^{37}-253 q^{36}-518 q^{35}-744 q^{34}+642 q^{33}+1807 q^{32}+368 q^{31}-1400 q^{30}-3385 q^{29}-217 q^{28}+4490 q^{27}+3818 q^{26}-590 q^{25}-8228 q^{24}-5045 q^{23}+5642 q^{22}+10246 q^{21}+5143 q^{20}-11875 q^{19}-13751 q^{18}+1667 q^{17}+15820 q^{16}+15318 q^{15}-10566 q^{14}-22033 q^{13}-6857 q^{12}+16840 q^{11}+25391 q^{10}-4814 q^9-26115 q^8-15813 q^7+13604 q^6+31686 q^5+2140 q^4-25795 q^3-22277 q^2+8365 q+33665+8365 q^{-1} -22277 q^{-2} -25795 q^{-3} +2140 q^{-4} +31686 q^{-5} +13604 q^{-6} -15813 q^{-7} -26115 q^{-8} -4814 q^{-9} +25391 q^{-10} +16840 q^{-11} -6857 q^{-12} -22033 q^{-13} -10566 q^{-14} +15318 q^{-15} +15820 q^{-16} +1667 q^{-17} -13751 q^{-18} -11875 q^{-19} +5143 q^{-20} +10246 q^{-21} +5642 q^{-22} -5045 q^{-23} -8228 q^{-24} -590 q^{-25} +3818 q^{-26} +4490 q^{-27} -217 q^{-28} -3385 q^{-29} -1400 q^{-30} +368 q^{-31} +1807 q^{-32} +642 q^{-33} -744 q^{-34} -518 q^{-35} -253 q^{-36} +385 q^{-37} +246 q^{-38} -89 q^{-39} -61 q^{-40} -94 q^{-41} +49 q^{-42} +40 q^{-43} -15 q^{-44} +2 q^{-45} -13 q^{-46} +6 q^{-47} +4 q^{-48} -4 q^{-49} + q^{-50} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 51: |
Line 54: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 115]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 115]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[20, 15, 1, 16], X[16, 7, 17, 8], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[20, 15, 1, 16], X[16, 7, 17, 8], |
Line 71: |
Line 74: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 115]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_115_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 115]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_115_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 115]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 115]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{NegativeAmphicheiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{NegativeAmphicheiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 115]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 115]][t]</nowiki></pre></td></tr> |