10 100: Difference between revisions
| No edit summary | DrorsRobot (talk | contribs)  No edit summary | ||
| Line 1: | Line 1: | ||
| <!--                       WARNING! WARNING! WARNING! | |||
| <!-- This page was | <!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! | ||
| <!--  --> <!-- | |||
| <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) | |||
|  --> | |||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> | |||
| <!-- <math>\text{Null}</math> --> | |||
| <!-- <math>\text{Null}</math> --> | |||
| {{Rolfsen Knot Page| | {{Rolfsen Knot Page| | ||
| n = 10 | | n = 10 | | ||
| Line 49: | Line 52: | ||
|          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | ||
|          </tr> |          </tr> | ||
|          <tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |          <tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 100]]</nowiki></pre></td></tr> |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 100]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[14, 7, 15, 8],  | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[14, 7, 15, 8],  | ||
| Line 69: | Line 72: | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> | ||
|          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Knot[10, 100]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:10_100_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[8]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> |          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Knot[10, 100]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:10_100_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[8]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 100]]&) /@ { |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 100]]&) /@ { | ||
|                     SymmetryType, UnknottingNumber, ThreeGenus, | |||
|                     BridgeIndex, SuperBridgeIndex, NakanishiIndex | |||
|                    }</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, {2, 3}, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr> | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, {2, 3}, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 100]][t]</nowiki></pre></td></tr> |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 100]][t]</nowiki></pre></td></tr> | ||
Revision as of 18:40, 31 August 2005
|  |  | 
|  (KnotPlot image) | See the full Rolfsen Knot Table. Visit 10 100's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) | 
Knot presentations
| Planar diagram presentation | X6271 X18,6,19,5 X20,13,1,14 X14,7,15,8 X10,3,11,4 X16,9,17,10 X4,11,5,12 X8,15,9,16 X12,19,13,20 X2,18,3,17 | 
| Gauss code | 1, -10, 5, -7, 2, -1, 4, -8, 6, -5, 7, -9, 3, -4, 8, -6, 10, -2, 9, -3 | 
| Dowker-Thistlethwaite code | 6 10 18 14 16 4 20 8 2 12 | 
| Conway Notation | [3:2:2] | 
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
| 
 Length is 10, width is 3, Braid index is 3 |   |  [{3, 10}, {2, 6}, {8, 11}, {9, 7}, {10, 12}, {11, 13}, {4, 8}, {6, 9}, {5, 3}, {12, 4}, {1, 5}, {13, 2}, {7, 1}] | 
[edit Notes on presentations of 10 100]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["10 100"]; | 
| In[4]:= | PD[K] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | X6271 X18,6,19,5 X20,13,1,14 X14,7,15,8 X10,3,11,4 X16,9,17,10 X4,11,5,12 X8,15,9,16 X12,19,13,20 X2,18,3,17 | 
| In[5]:= | GaussCode[K] | 
| Out[5]= | 1, -10, 5, -7, 2, -1, 4, -8, 6, -5, 7, -9, 3, -4, 8, -6, 10, -2, 9, -3 | 
| In[6]:= | DTCode[K] | 
| Out[6]= | 6 10 18 14 16 4 20 8 2 12 | 
(The path below may be different on your system)
| In[7]:= | AppendTo[$Path, "C:/bin/LinKnot/"]; | 
| In[8]:= | ConwayNotation[K] | 
| Out[8]= | [3:2:2] | 
| In[9]:= | br = BR[K] | 
| KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051. | 
| Out[9]= | 
| In[10]:= | {First[br], Crossings[br], BraidIndex[K]} | 
| KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/. | 
| KnotTheory::loading: Loading precomputed data in IndianaData`. | 
| Out[10]= | { 3, 10, 3 } | 
| In[11]:= | Show[BraidPlot[br]] | 
| 
 | 
| Out[11]= | -Graphics- | 
| In[12]:= | Show[DrawMorseLink[K]] | 
| KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005." | 
| KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005." | 
|   | 
| Out[12]= | -Graphics- | 
| In[13]:= | ap = ArcPresentation[K] | 
| Out[13]= | ArcPresentation[{3, 10}, {2, 6}, {8, 11}, {9, 7}, {10, 12}, {11, 13}, {4, 8}, {6, 9}, {5, 3}, {12, 4}, {1, 5}, {13, 2}, {7, 1}] | 
| In[14]:= | Draw[ap] | 
|   | 
| Out[14]= | -Graphics- | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 100"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 65, -4 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["10 100"]; | 
| In[4]:= | {A = Alexander[K][t], J = Jones[K][q]} | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[4]= | { , } | 
| In[5]:= | DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K] | 
| KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`. | 
| KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005. | 
| Out[5]= | {} | 
| In[6]:= | DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots11`. | 
| Out[6]= | {} | 
Vassiliev invariants
| V2 and V3: | (4, -7) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 10 100. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. | 
 | 







