10 101
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 101's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X14,6,15,5 X20,16,1,15 X16,12,17,11 X12,20,13,19 X18,8,19,7 X6,14,7,13 X8,18,9,17 X2,10,3,9 |
| Gauss code | 1, -10, 2, -1, 3, -8, 7, -9, 10, -2, 5, -6, 8, -3, 4, -5, 9, -7, 6, -4 |
| Dowker-Thistlethwaite code | 4 10 14 18 2 16 6 20 8 12 |
| Conway Notation | [21:2:2] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 14, width is 5, Braid index is 5 |
|
![]() [{3, 9}, {2, 5}, {1, 3}, {10, 7}, {8, 6}, {7, 4}, {9, 11}, {5, 10}, {12, 8}, {11, 2}, {4, 12}, {6, 1}] |
[edit Notes on presentations of 10 101]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 101"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,4,11,3 X14,6,15,5 X20,16,1,15 X16,12,17,11 X12,20,13,19 X18,8,19,7 X6,14,7,13 X8,18,9,17 X2,10,3,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, 3, -8, 7, -9, 10, -2, 5, -6, 8, -3, 4, -5, 9, -7, 6, -4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 14 18 2 16 6 20 8 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[21:2:2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{1,1,1,2,-1,3,-2,1,3,2,2,4,-3,4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 14, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 9}, {2, 5}, {1, 3}, {10, 7}, {8, 6}, {7, 4}, {9, 11}, {5, 10}, {12, 8}, {11, 2}, {4, 12}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7 t^2-21 t+29-21 t^{-1} +7 t^{-2} } |
| Conway polynomial | |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 85, 4 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-4 q^{11}+7 q^{10}-11 q^9+13 q^8-14 q^7+14 q^6-10 q^5+7 q^4-3 q^3+q^2} |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-4} +3 z^4 a^{-6} +3 z^4 a^{-8} +z^2 a^{-4} +5 z^2 a^{-6} +5 z^2 a^{-8} -4 z^2 a^{-10} +2 a^{-6} +2 a^{-8} -4 a^{-10} + a^{-12} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^9 a^{-9} +2 z^9 a^{-11} +6 z^8 a^{-8} +11 z^8 a^{-10} +5 z^8 a^{-12} +7 z^7 a^{-7} +10 z^7 a^{-9} +7 z^7 a^{-11} +4 z^7 a^{-13} +6 z^6 a^{-6} -6 z^6 a^{-8} -24 z^6 a^{-10} -11 z^6 a^{-12} +z^6 a^{-14} +3 z^5 a^{-5} -8 z^5 a^{-7} -31 z^5 a^{-9} -31 z^5 a^{-11} -11 z^5 a^{-13} +z^4 a^{-4} -8 z^4 a^{-6} +z^4 a^{-8} +15 z^4 a^{-10} +3 z^4 a^{-12} -2 z^4 a^{-14} -2 z^3 a^{-5} +4 z^3 a^{-7} +26 z^3 a^{-9} +28 z^3 a^{-11} +8 z^3 a^{-13} -z^2 a^{-4} +7 z^2 a^{-6} -z^2 a^{-8} -9 z^2 a^{-10} +z^2 a^{-12} +z^2 a^{-14} -8 z a^{-9} -9 z a^{-11} -z a^{-13} -2 a^{-6} +2 a^{-8} +4 a^{-10} + a^{-12} } |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} -2 q^{-8} +2 q^{-10} + q^{-12} -2 q^{-14} +4 q^{-16} +2 q^{-20} +2 q^{-22} - q^{-24} +2 q^{-26} -4 q^{-28} - q^{-30} -3 q^{-34} + q^{-36} + q^{-38} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} -2 q^{-32} +4 q^{-34} -6 q^{-36} +6 q^{-38} -5 q^{-40} +11 q^{-44} -21 q^{-46} +33 q^{-48} -38 q^{-50} +31 q^{-52} -14 q^{-54} -15 q^{-56} +52 q^{-58} -84 q^{-60} +107 q^{-62} -105 q^{-64} +68 q^{-66} +3 q^{-68} -87 q^{-70} +169 q^{-72} -206 q^{-74} +183 q^{-76} -94 q^{-78} -40 q^{-80} +166 q^{-82} -226 q^{-84} +203 q^{-86} -85 q^{-88} -58 q^{-90} +169 q^{-92} -188 q^{-94} +107 q^{-96} +45 q^{-98} -192 q^{-100} +265 q^{-102} -220 q^{-104} +73 q^{-106} +125 q^{-108} -289 q^{-110} +359 q^{-112} -307 q^{-114} +147 q^{-116} +50 q^{-118} -229 q^{-120} +322 q^{-122} -304 q^{-124} +183 q^{-126} -14 q^{-128} -146 q^{-130} +224 q^{-132} -204 q^{-134} +85 q^{-136} +65 q^{-138} -188 q^{-140} +214 q^{-142} -138 q^{-144} -16 q^{-146} +177 q^{-148} -270 q^{-150} +259 q^{-152} -149 q^{-154} -14 q^{-156} +158 q^{-158} -232 q^{-160} +224 q^{-162} -139 q^{-164} +32 q^{-166} +59 q^{-168} -106 q^{-170} +105 q^{-172} -71 q^{-174} +33 q^{-176} + q^{-178} -19 q^{-180} +20 q^{-182} -16 q^{-184} +8 q^{-186} -3 q^{-188} + q^{-190} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} -2 q^{-5} +4 q^{-7} -3 q^{-9} +4 q^{-11} - q^{-15} +2 q^{-17} -4 q^{-19} +3 q^{-21} -3 q^{-23} + q^{-25} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} -2 q^{-8} + q^{-10} +6 q^{-12} -9 q^{-14} +3 q^{-16} +17 q^{-18} -24 q^{-20} +35 q^{-24} -26 q^{-26} -15 q^{-28} +34 q^{-30} -7 q^{-32} -22 q^{-34} +11 q^{-36} +16 q^{-38} -16 q^{-40} -15 q^{-42} +27 q^{-44} -2 q^{-46} -33 q^{-48} +25 q^{-50} +16 q^{-52} -35 q^{-54} +9 q^{-56} +23 q^{-58} -18 q^{-60} -5 q^{-62} +12 q^{-64} -2 q^{-66} -3 q^{-68} + q^{-70} } |
| 3 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 101"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7 t^2-21 t+29-21 t^{-1} +7 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 85, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-4 q^{11}+7 q^{10}-11 q^9+13 q^8-14 q^7+14 q^6-10 q^5+7 q^4-3 q^3+q^2} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-4} +3 z^4 a^{-6} +3 z^4 a^{-8} +z^2 a^{-4} +5 z^2 a^{-6} +5 z^2 a^{-8} -4 z^2 a^{-10} +2 a^{-6} +2 a^{-8} -4 a^{-10} + a^{-12} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^9 a^{-9} +2 z^9 a^{-11} +6 z^8 a^{-8} +11 z^8 a^{-10} +5 z^8 a^{-12} +7 z^7 a^{-7} +10 z^7 a^{-9} +7 z^7 a^{-11} +4 z^7 a^{-13} +6 z^6 a^{-6} -6 z^6 a^{-8} -24 z^6 a^{-10} -11 z^6 a^{-12} +z^6 a^{-14} +3 z^5 a^{-5} -8 z^5 a^{-7} -31 z^5 a^{-9} -31 z^5 a^{-11} -11 z^5 a^{-13} +z^4 a^{-4} -8 z^4 a^{-6} +z^4 a^{-8} +15 z^4 a^{-10} +3 z^4 a^{-12} -2 z^4 a^{-14} -2 z^3 a^{-5} +4 z^3 a^{-7} +26 z^3 a^{-9} +28 z^3 a^{-11} +8 z^3 a^{-13} -z^2 a^{-4} +7 z^2 a^{-6} -z^2 a^{-8} -9 z^2 a^{-10} +z^2 a^{-12} +z^2 a^{-14} -8 z a^{-9} -9 z a^{-11} -z a^{-13} -2 a^{-6} +2 a^{-8} +4 a^{-10} + a^{-12} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a200,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 101"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a200,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (7, 17) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where 4 is the signature of 10 101. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{34}-4 q^{33}+q^{32}+15 q^{31}-21 q^{30}-12 q^{29}+56 q^{28}-35 q^{27}-56 q^{26}+107 q^{25}-26 q^{24}-114 q^{23}+138 q^{22}+3 q^{21}-156 q^{20}+137 q^{19}+35 q^{18}-161 q^{17}+104 q^{16}+50 q^{15}-120 q^{14}+55 q^{13}+39 q^{12}-59 q^{11}+20 q^{10}+15 q^9-18 q^8+6 q^7+3 q^6-3 q^5+q^4} |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}-4 q^{65}+q^{64}+9 q^{63}+5 q^{62}-24 q^{61}-24 q^{60}+47 q^{59}+60 q^{58}-54 q^{57}-135 q^{56}+43 q^{55}+224 q^{54}+19 q^{53}-322 q^{52}-123 q^{51}+385 q^{50}+286 q^{49}-424 q^{48}-448 q^{47}+388 q^{46}+630 q^{45}-322 q^{44}-775 q^{43}+207 q^{42}+902 q^{41}-84 q^{40}-981 q^{39}-55 q^{38}+1025 q^{37}+192 q^{36}-1032 q^{35}-310 q^{34}+974 q^{33}+426 q^{32}-889 q^{31}-479 q^{30}+723 q^{29}+524 q^{28}-568 q^{27}-478 q^{26}+375 q^{25}+416 q^{24}-235 q^{23}-301 q^{22}+113 q^{21}+209 q^{20}-62 q^{19}-110 q^{18}+22 q^{17}+60 q^{16}-16 q^{15}-24 q^{14}+10 q^{13}+11 q^{12}-8 q^{11}-2 q^{10}+2 q^9+3 q^8-3 q^7+q^6} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




