9 18: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 9 |
n = 9 |
Line 40: Line 43:
coloured_jones_3 = <math> q^{-6} -2 q^{-7} + q^{-8} +2 q^{-9} +2 q^{-10} -8 q^{-11} +13 q^{-13} +5 q^{-14} -27 q^{-15} -5 q^{-16} +37 q^{-17} +22 q^{-18} -65 q^{-19} -29 q^{-20} +78 q^{-21} +57 q^{-22} -104 q^{-23} -76 q^{-24} +114 q^{-25} +107 q^{-26} -128 q^{-27} -126 q^{-28} +127 q^{-29} +145 q^{-30} -124 q^{-31} -155 q^{-32} +111 q^{-33} +160 q^{-34} -95 q^{-35} -157 q^{-36} +74 q^{-37} +148 q^{-38} -50 q^{-39} -134 q^{-40} +26 q^{-41} +116 q^{-42} -7 q^{-43} -93 q^{-44} -7 q^{-45} +68 q^{-46} +18 q^{-47} -48 q^{-48} -17 q^{-49} +26 q^{-50} +17 q^{-51} -15 q^{-52} -10 q^{-53} +5 q^{-54} +7 q^{-55} -3 q^{-56} -2 q^{-57} +2 q^{-59} - q^{-60} </math> |
coloured_jones_3 = <math> q^{-6} -2 q^{-7} + q^{-8} +2 q^{-9} +2 q^{-10} -8 q^{-11} +13 q^{-13} +5 q^{-14} -27 q^{-15} -5 q^{-16} +37 q^{-17} +22 q^{-18} -65 q^{-19} -29 q^{-20} +78 q^{-21} +57 q^{-22} -104 q^{-23} -76 q^{-24} +114 q^{-25} +107 q^{-26} -128 q^{-27} -126 q^{-28} +127 q^{-29} +145 q^{-30} -124 q^{-31} -155 q^{-32} +111 q^{-33} +160 q^{-34} -95 q^{-35} -157 q^{-36} +74 q^{-37} +148 q^{-38} -50 q^{-39} -134 q^{-40} +26 q^{-41} +116 q^{-42} -7 q^{-43} -93 q^{-44} -7 q^{-45} +68 q^{-46} +18 q^{-47} -48 q^{-48} -17 q^{-49} +26 q^{-50} +17 q^{-51} -15 q^{-52} -10 q^{-53} +5 q^{-54} +7 q^{-55} -3 q^{-56} -2 q^{-57} +2 q^{-59} - q^{-60} </math> |
coloured_jones_4 = <math> q^{-8} -2 q^{-9} + q^{-10} +2 q^{-11} -2 q^{-12} +4 q^{-13} -9 q^{-14} +3 q^{-15} +11 q^{-16} -7 q^{-17} +9 q^{-18} -31 q^{-19} +9 q^{-20} +39 q^{-21} -12 q^{-22} +10 q^{-23} -89 q^{-24} +15 q^{-25} +106 q^{-26} +10 q^{-27} +14 q^{-28} -221 q^{-29} -15 q^{-30} +218 q^{-31} +103 q^{-32} +53 q^{-33} -423 q^{-34} -123 q^{-35} +321 q^{-36} +266 q^{-37} +168 q^{-38} -626 q^{-39} -300 q^{-40} +355 q^{-41} +433 q^{-42} +333 q^{-43} -748 q^{-44} -465 q^{-45} +310 q^{-46} +527 q^{-47} +486 q^{-48} -762 q^{-49} -557 q^{-50} +218 q^{-51} +529 q^{-52} +582 q^{-53} -679 q^{-54} -567 q^{-55} +97 q^{-56} +456 q^{-57} +621 q^{-58} -520 q^{-59} -512 q^{-60} -36 q^{-61} +323 q^{-62} +599 q^{-63} -308 q^{-64} -397 q^{-65} -153 q^{-66} +155 q^{-67} +506 q^{-68} -105 q^{-69} -239 q^{-70} -195 q^{-71} +4 q^{-72} +343 q^{-73} +19 q^{-74} -83 q^{-75} -151 q^{-76} -73 q^{-77} +171 q^{-78} +42 q^{-79} +7 q^{-80} -70 q^{-81} -67 q^{-82} +58 q^{-83} +17 q^{-84} +23 q^{-85} -17 q^{-86} -31 q^{-87} +15 q^{-88} +10 q^{-90} - q^{-91} -9 q^{-92} +4 q^{-93} - q^{-94} +2 q^{-95} -2 q^{-97} + q^{-98} </math> |
coloured_jones_4 = <math> q^{-8} -2 q^{-9} + q^{-10} +2 q^{-11} -2 q^{-12} +4 q^{-13} -9 q^{-14} +3 q^{-15} +11 q^{-16} -7 q^{-17} +9 q^{-18} -31 q^{-19} +9 q^{-20} +39 q^{-21} -12 q^{-22} +10 q^{-23} -89 q^{-24} +15 q^{-25} +106 q^{-26} +10 q^{-27} +14 q^{-28} -221 q^{-29} -15 q^{-30} +218 q^{-31} +103 q^{-32} +53 q^{-33} -423 q^{-34} -123 q^{-35} +321 q^{-36} +266 q^{-37} +168 q^{-38} -626 q^{-39} -300 q^{-40} +355 q^{-41} +433 q^{-42} +333 q^{-43} -748 q^{-44} -465 q^{-45} +310 q^{-46} +527 q^{-47} +486 q^{-48} -762 q^{-49} -557 q^{-50} +218 q^{-51} +529 q^{-52} +582 q^{-53} -679 q^{-54} -567 q^{-55} +97 q^{-56} +456 q^{-57} +621 q^{-58} -520 q^{-59} -512 q^{-60} -36 q^{-61} +323 q^{-62} +599 q^{-63} -308 q^{-64} -397 q^{-65} -153 q^{-66} +155 q^{-67} +506 q^{-68} -105 q^{-69} -239 q^{-70} -195 q^{-71} +4 q^{-72} +343 q^{-73} +19 q^{-74} -83 q^{-75} -151 q^{-76} -73 q^{-77} +171 q^{-78} +42 q^{-79} +7 q^{-80} -70 q^{-81} -67 q^{-82} +58 q^{-83} +17 q^{-84} +23 q^{-85} -17 q^{-86} -31 q^{-87} +15 q^{-88} +10 q^{-90} - q^{-91} -9 q^{-92} +4 q^{-93} - q^{-94} +2 q^{-95} -2 q^{-97} + q^{-98} </math> |
coloured_jones_5 = |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_6 = |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_7 = |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |
computer_talk =
computer_talk =
<table>
<table>
Line 49: Line 52:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 18]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 18]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[9, 18, 10, 1],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[9, 18, 10, 1],
Line 67: Line 70:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 18]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_18_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 18]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_18_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 18]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 18]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, {4, 6}, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, {4, 6}, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 18]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 18]][t]</nowiki></pre></td></tr>

Revision as of 17:41, 31 August 2005

9 17.gif

9_17

9 19.gif

9_19

9 18.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 18's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 18 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,12,4,13 X5,14,6,15 X9,18,10,1 X17,6,18,7 X7,16,8,17 X15,8,16,9 X13,10,14,11 X11,2,12,3
Gauss code -1, 9, -2, 1, -3, 5, -6, 7, -4, 8, -9, 2, -8, 3, -7, 6, -5, 4
Dowker-Thistlethwaite code 4 12 14 16 18 2 10 8 6
Conway Notation [3222]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

9 18 ML.gif 9 18 AP.gif
[{11, 5}, {1, 9}, {8, 10}, {9, 11}, {10, 6}, {5, 7}, {4, 8}, {6, 3}, {2, 4}, {3, 1}, {7, 2}]

[edit Notes on presentations of 9 18]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-14][3]
Hyperbolic Volume 10.0577
A-Polynomial See Data:9 18/A-polynomial

[edit Notes for 9 18's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 18's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 41, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a246,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (6, -15)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 18. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        21-1
-7       3  3
-9      32  -1
-11     43   1
-13    33    0
-15   34     -1
-17  13      2
-19 13       -2
-21 1        1
-231         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials