|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 41: |
Line 44: |
|
coloured_jones_3 = <math>q^6-3 q^5+q^4+5 q^3+3 q^2-17 q-10+34 q^{-1} +35 q^{-2} -55 q^{-3} -80 q^{-4} +58 q^{-5} +163 q^{-6} -47 q^{-7} -245 q^{-8} -26 q^{-9} +349 q^{-10} +121 q^{-11} -403 q^{-12} -279 q^{-13} +450 q^{-14} +421 q^{-15} -418 q^{-16} -599 q^{-17} +383 q^{-18} +718 q^{-19} -285 q^{-20} -844 q^{-21} +193 q^{-22} +920 q^{-23} -83 q^{-24} -955 q^{-25} -34 q^{-26} +961 q^{-27} +131 q^{-28} -894 q^{-29} -238 q^{-30} +807 q^{-31} +286 q^{-32} -649 q^{-33} -329 q^{-34} +495 q^{-35} +304 q^{-36} -325 q^{-37} -261 q^{-38} +195 q^{-39} +193 q^{-40} -104 q^{-41} -118 q^{-42} +42 q^{-43} +70 q^{-44} -21 q^{-45} -31 q^{-46} +9 q^{-47} +13 q^{-48} -6 q^{-49} -3 q^{-50} + q^{-51} +3 q^{-52} -3 q^{-53} + q^{-54} </math> | |
|
coloured_jones_3 = <math>q^6-3 q^5+q^4+5 q^3+3 q^2-17 q-10+34 q^{-1} +35 q^{-2} -55 q^{-3} -80 q^{-4} +58 q^{-5} +163 q^{-6} -47 q^{-7} -245 q^{-8} -26 q^{-9} +349 q^{-10} +121 q^{-11} -403 q^{-12} -279 q^{-13} +450 q^{-14} +421 q^{-15} -418 q^{-16} -599 q^{-17} +383 q^{-18} +718 q^{-19} -285 q^{-20} -844 q^{-21} +193 q^{-22} +920 q^{-23} -83 q^{-24} -955 q^{-25} -34 q^{-26} +961 q^{-27} +131 q^{-28} -894 q^{-29} -238 q^{-30} +807 q^{-31} +286 q^{-32} -649 q^{-33} -329 q^{-34} +495 q^{-35} +304 q^{-36} -325 q^{-37} -261 q^{-38} +195 q^{-39} +193 q^{-40} -104 q^{-41} -118 q^{-42} +42 q^{-43} +70 q^{-44} -21 q^{-45} -31 q^{-46} +9 q^{-47} +13 q^{-48} -6 q^{-49} -3 q^{-50} + q^{-51} +3 q^{-52} -3 q^{-53} + q^{-54} </math> | |
|
coloured_jones_4 = <math>q^{12}-3 q^{11}+q^{10}+5 q^9-3 q^8+3 q^7-20 q^6+2 q^5+36 q^4+7 q^3+15 q^2-109 q-57+109 q^{-1} +125 q^{-2} +177 q^{-3} -280 q^{-4} -366 q^{-5} -17 q^{-6} +313 q^{-7} +815 q^{-8} -139 q^{-9} -853 q^{-10} -770 q^{-11} -20 q^{-12} +1774 q^{-13} +855 q^{-14} -712 q^{-15} -1910 q^{-16} -1505 q^{-17} +2073 q^{-18} +2368 q^{-19} +746 q^{-20} -2366 q^{-21} -3698 q^{-22} +1000 q^{-23} +3274 q^{-24} +3057 q^{-25} -1488 q^{-26} -5467 q^{-27} -997 q^{-28} +3002 q^{-29} +5172 q^{-30} +266 q^{-31} -6245 q^{-32} -3014 q^{-33} +1950 q^{-34} +6557 q^{-35} +2109 q^{-36} -6208 q^{-37} -4600 q^{-38} +638 q^{-39} +7197 q^{-40} +3709 q^{-41} -5511 q^{-42} -5652 q^{-43} -828 q^{-44} +6975 q^{-45} +4939 q^{-46} -4023 q^{-47} -5826 q^{-48} -2340 q^{-49} +5546 q^{-50} +5354 q^{-51} -1880 q^{-52} -4700 q^{-53} -3280 q^{-54} +3163 q^{-55} +4448 q^{-56} -5 q^{-57} -2607 q^{-58} -2975 q^{-59} +978 q^{-60} +2591 q^{-61} +710 q^{-62} -758 q^{-63} -1754 q^{-64} -46 q^{-65} +964 q^{-66} +474 q^{-67} +48 q^{-68} -664 q^{-69} -147 q^{-70} +216 q^{-71} +121 q^{-72} +121 q^{-73} -170 q^{-74} -38 q^{-75} +36 q^{-76} -3 q^{-77} +47 q^{-78} -36 q^{-79} -2 q^{-80} +10 q^{-81} -9 q^{-82} +10 q^{-83} -7 q^{-84} + q^{-85} +3 q^{-86} -3 q^{-87} + q^{-88} </math> | |
|
coloured_jones_4 = <math>q^{12}-3 q^{11}+q^{10}+5 q^9-3 q^8+3 q^7-20 q^6+2 q^5+36 q^4+7 q^3+15 q^2-109 q-57+109 q^{-1} +125 q^{-2} +177 q^{-3} -280 q^{-4} -366 q^{-5} -17 q^{-6} +313 q^{-7} +815 q^{-8} -139 q^{-9} -853 q^{-10} -770 q^{-11} -20 q^{-12} +1774 q^{-13} +855 q^{-14} -712 q^{-15} -1910 q^{-16} -1505 q^{-17} +2073 q^{-18} +2368 q^{-19} +746 q^{-20} -2366 q^{-21} -3698 q^{-22} +1000 q^{-23} +3274 q^{-24} +3057 q^{-25} -1488 q^{-26} -5467 q^{-27} -997 q^{-28} +3002 q^{-29} +5172 q^{-30} +266 q^{-31} -6245 q^{-32} -3014 q^{-33} +1950 q^{-34} +6557 q^{-35} +2109 q^{-36} -6208 q^{-37} -4600 q^{-38} +638 q^{-39} +7197 q^{-40} +3709 q^{-41} -5511 q^{-42} -5652 q^{-43} -828 q^{-44} +6975 q^{-45} +4939 q^{-46} -4023 q^{-47} -5826 q^{-48} -2340 q^{-49} +5546 q^{-50} +5354 q^{-51} -1880 q^{-52} -4700 q^{-53} -3280 q^{-54} +3163 q^{-55} +4448 q^{-56} -5 q^{-57} -2607 q^{-58} -2975 q^{-59} +978 q^{-60} +2591 q^{-61} +710 q^{-62} -758 q^{-63} -1754 q^{-64} -46 q^{-65} +964 q^{-66} +474 q^{-67} +48 q^{-68} -664 q^{-69} -147 q^{-70} +216 q^{-71} +121 q^{-72} +121 q^{-73} -170 q^{-74} -38 q^{-75} +36 q^{-76} -3 q^{-77} +47 q^{-78} -36 q^{-79} -2 q^{-80} +10 q^{-81} -9 q^{-82} +10 q^{-83} -7 q^{-84} + q^{-85} +3 q^{-86} -3 q^{-87} + q^{-88} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 50: |
Line 53: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 98]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 98]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 10, 4, 11], X[7, 18, 8, 19], X[17, 8, 18, 9], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 10, 4, 11], X[7, 18, 8, 19], X[17, 8, 18, 9], |
Line 70: |
Line 73: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 98]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_98_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 98]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_98_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 98]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 98]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 98]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 98]][t]</nowiki></pre></td></tr> |