10 98: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
| Line 41: | Line 44: | ||
coloured_jones_3 = <math>q^6-3 q^5+q^4+5 q^3+3 q^2-17 q-10+34 q^{-1} +35 q^{-2} -55 q^{-3} -80 q^{-4} +58 q^{-5} +163 q^{-6} -47 q^{-7} -245 q^{-8} -26 q^{-9} +349 q^{-10} +121 q^{-11} -403 q^{-12} -279 q^{-13} +450 q^{-14} +421 q^{-15} -418 q^{-16} -599 q^{-17} +383 q^{-18} +718 q^{-19} -285 q^{-20} -844 q^{-21} +193 q^{-22} +920 q^{-23} -83 q^{-24} -955 q^{-25} -34 q^{-26} +961 q^{-27} +131 q^{-28} -894 q^{-29} -238 q^{-30} +807 q^{-31} +286 q^{-32} -649 q^{-33} -329 q^{-34} +495 q^{-35} +304 q^{-36} -325 q^{-37} -261 q^{-38} +195 q^{-39} +193 q^{-40} -104 q^{-41} -118 q^{-42} +42 q^{-43} +70 q^{-44} -21 q^{-45} -31 q^{-46} +9 q^{-47} +13 q^{-48} -6 q^{-49} -3 q^{-50} + q^{-51} +3 q^{-52} -3 q^{-53} + q^{-54} </math> | |
coloured_jones_3 = <math>q^6-3 q^5+q^4+5 q^3+3 q^2-17 q-10+34 q^{-1} +35 q^{-2} -55 q^{-3} -80 q^{-4} +58 q^{-5} +163 q^{-6} -47 q^{-7} -245 q^{-8} -26 q^{-9} +349 q^{-10} +121 q^{-11} -403 q^{-12} -279 q^{-13} +450 q^{-14} +421 q^{-15} -418 q^{-16} -599 q^{-17} +383 q^{-18} +718 q^{-19} -285 q^{-20} -844 q^{-21} +193 q^{-22} +920 q^{-23} -83 q^{-24} -955 q^{-25} -34 q^{-26} +961 q^{-27} +131 q^{-28} -894 q^{-29} -238 q^{-30} +807 q^{-31} +286 q^{-32} -649 q^{-33} -329 q^{-34} +495 q^{-35} +304 q^{-36} -325 q^{-37} -261 q^{-38} +195 q^{-39} +193 q^{-40} -104 q^{-41} -118 q^{-42} +42 q^{-43} +70 q^{-44} -21 q^{-45} -31 q^{-46} +9 q^{-47} +13 q^{-48} -6 q^{-49} -3 q^{-50} + q^{-51} +3 q^{-52} -3 q^{-53} + q^{-54} </math> | |
||
coloured_jones_4 = <math>q^{12}-3 q^{11}+q^{10}+5 q^9-3 q^8+3 q^7-20 q^6+2 q^5+36 q^4+7 q^3+15 q^2-109 q-57+109 q^{-1} +125 q^{-2} +177 q^{-3} -280 q^{-4} -366 q^{-5} -17 q^{-6} +313 q^{-7} +815 q^{-8} -139 q^{-9} -853 q^{-10} -770 q^{-11} -20 q^{-12} +1774 q^{-13} +855 q^{-14} -712 q^{-15} -1910 q^{-16} -1505 q^{-17} +2073 q^{-18} +2368 q^{-19} +746 q^{-20} -2366 q^{-21} -3698 q^{-22} +1000 q^{-23} +3274 q^{-24} +3057 q^{-25} -1488 q^{-26} -5467 q^{-27} -997 q^{-28} +3002 q^{-29} +5172 q^{-30} +266 q^{-31} -6245 q^{-32} -3014 q^{-33} +1950 q^{-34} +6557 q^{-35} +2109 q^{-36} -6208 q^{-37} -4600 q^{-38} +638 q^{-39} +7197 q^{-40} +3709 q^{-41} -5511 q^{-42} -5652 q^{-43} -828 q^{-44} +6975 q^{-45} +4939 q^{-46} -4023 q^{-47} -5826 q^{-48} -2340 q^{-49} +5546 q^{-50} +5354 q^{-51} -1880 q^{-52} -4700 q^{-53} -3280 q^{-54} +3163 q^{-55} +4448 q^{-56} -5 q^{-57} -2607 q^{-58} -2975 q^{-59} +978 q^{-60} +2591 q^{-61} +710 q^{-62} -758 q^{-63} -1754 q^{-64} -46 q^{-65} +964 q^{-66} +474 q^{-67} +48 q^{-68} -664 q^{-69} -147 q^{-70} +216 q^{-71} +121 q^{-72} +121 q^{-73} -170 q^{-74} -38 q^{-75} +36 q^{-76} -3 q^{-77} +47 q^{-78} -36 q^{-79} -2 q^{-80} +10 q^{-81} -9 q^{-82} +10 q^{-83} -7 q^{-84} + q^{-85} +3 q^{-86} -3 q^{-87} + q^{-88} </math> | |
coloured_jones_4 = <math>q^{12}-3 q^{11}+q^{10}+5 q^9-3 q^8+3 q^7-20 q^6+2 q^5+36 q^4+7 q^3+15 q^2-109 q-57+109 q^{-1} +125 q^{-2} +177 q^{-3} -280 q^{-4} -366 q^{-5} -17 q^{-6} +313 q^{-7} +815 q^{-8} -139 q^{-9} -853 q^{-10} -770 q^{-11} -20 q^{-12} +1774 q^{-13} +855 q^{-14} -712 q^{-15} -1910 q^{-16} -1505 q^{-17} +2073 q^{-18} +2368 q^{-19} +746 q^{-20} -2366 q^{-21} -3698 q^{-22} +1000 q^{-23} +3274 q^{-24} +3057 q^{-25} -1488 q^{-26} -5467 q^{-27} -997 q^{-28} +3002 q^{-29} +5172 q^{-30} +266 q^{-31} -6245 q^{-32} -3014 q^{-33} +1950 q^{-34} +6557 q^{-35} +2109 q^{-36} -6208 q^{-37} -4600 q^{-38} +638 q^{-39} +7197 q^{-40} +3709 q^{-41} -5511 q^{-42} -5652 q^{-43} -828 q^{-44} +6975 q^{-45} +4939 q^{-46} -4023 q^{-47} -5826 q^{-48} -2340 q^{-49} +5546 q^{-50} +5354 q^{-51} -1880 q^{-52} -4700 q^{-53} -3280 q^{-54} +3163 q^{-55} +4448 q^{-56} -5 q^{-57} -2607 q^{-58} -2975 q^{-59} +978 q^{-60} +2591 q^{-61} +710 q^{-62} -758 q^{-63} -1754 q^{-64} -46 q^{-65} +964 q^{-66} +474 q^{-67} +48 q^{-68} -664 q^{-69} -147 q^{-70} +216 q^{-71} +121 q^{-72} +121 q^{-73} -170 q^{-74} -38 q^{-75} +36 q^{-76} -3 q^{-77} +47 q^{-78} -36 q^{-79} -2 q^{-80} +10 q^{-81} -9 q^{-82} +10 q^{-83} -7 q^{-84} + q^{-85} +3 q^{-86} -3 q^{-87} + q^{-88} </math> | |
||
coloured_jones_5 = | |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_6 = | |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_7 = | |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
| Line 50: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 98]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 98]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 10, 4, 11], X[7, 18, 8, 19], X[17, 8, 18, 9], |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 10, 4, 11], X[7, 18, 8, 19], X[17, 8, 18, 9], |
||
| Line 70: | Line 73: | ||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 98]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_98_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 98]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_98_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 98]]&) /@ { |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 98]]&) /@ { |
||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 98]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 98]][t]</nowiki></pre></td></tr> |
||
Revision as of 17:43, 31 August 2005
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 98's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1627 X3,10,4,11 X7,18,8,19 X17,8,18,9 X9,2,10,3 X11,16,12,17 X5,15,6,14 X15,5,16,4 X13,20,14,1 X19,12,20,13 |
| Gauss code | -1, 5, -2, 8, -7, 1, -3, 4, -5, 2, -6, 10, -9, 7, -8, 6, -4, 3, -10, 9 |
| Dowker-Thistlethwaite code | 6 10 14 18 2 16 20 4 8 12 |
| Conway Notation | [.2.2.2.20] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{13, 2}, {1, 9}, {8, 3}, {2, 7}, {6, 8}, {7, 10}, {9, 11}, {10, 4}, {12, 6}, {11, 13}, {3, 5}, {4, 12}, {5, 1}] |
[edit Notes on presentations of 10 98]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 98"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3,10,4,11 X7,18,8,19 X17,8,18,9 X9,2,10,3 X11,16,12,17 X5,15,6,14 X15,5,16,4 X13,20,14,1 X19,12,20,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 5, -2, 8, -7, 1, -3, 4, -5, 2, -6, 10, -9, 7, -8, 6, -4, 3, -10, 9 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 14 18 2 16 20 4 8 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[.2.2.2.20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{-1,-1,-2,-2,3,-2,1,-2,-2,3,-2\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{13, 2}, {1, 9}, {8, 3}, {2, 7}, {6, 8}, {7, 10}, {9, 11}, {10, 4}, {12, 6}, {11, 13}, {3, 5}, {4, 12}, {5, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 98"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 81, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_87, K11a58, K11a165, K11n72,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 98"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_87, K11a58, K11a165, K11n72,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (0, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -4 is the signature of 10 98. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^2-3 q+1+11 q^{-1} -17 q^{-2} -7 q^{-3} +45 q^{-4} -34 q^{-5} -40 q^{-6} +94 q^{-7} -33 q^{-8} -93 q^{-9} +130 q^{-10} -13 q^{-11} -137 q^{-12} +136 q^{-13} +17 q^{-14} -147 q^{-15} +110 q^{-16} +37 q^{-17} -116 q^{-18} +63 q^{-19} +33 q^{-20} -62 q^{-21} +22 q^{-22} +16 q^{-23} -19 q^{-24} +5 q^{-25} +3 q^{-26} -3 q^{-27} + q^{-28} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-3 q^5+q^4+5 q^3+3 q^2-17 q-10+34 q^{-1} +35 q^{-2} -55 q^{-3} -80 q^{-4} +58 q^{-5} +163 q^{-6} -47 q^{-7} -245 q^{-8} -26 q^{-9} +349 q^{-10} +121 q^{-11} -403 q^{-12} -279 q^{-13} +450 q^{-14} +421 q^{-15} -418 q^{-16} -599 q^{-17} +383 q^{-18} +718 q^{-19} -285 q^{-20} -844 q^{-21} +193 q^{-22} +920 q^{-23} -83 q^{-24} -955 q^{-25} -34 q^{-26} +961 q^{-27} +131 q^{-28} -894 q^{-29} -238 q^{-30} +807 q^{-31} +286 q^{-32} -649 q^{-33} -329 q^{-34} +495 q^{-35} +304 q^{-36} -325 q^{-37} -261 q^{-38} +195 q^{-39} +193 q^{-40} -104 q^{-41} -118 q^{-42} +42 q^{-43} +70 q^{-44} -21 q^{-45} -31 q^{-46} +9 q^{-47} +13 q^{-48} -6 q^{-49} -3 q^{-50} + q^{-51} +3 q^{-52} -3 q^{-53} + q^{-54} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-3 q^{11}+q^{10}+5 q^9-3 q^8+3 q^7-20 q^6+2 q^5+36 q^4+7 q^3+15 q^2-109 q-57+109 q^{-1} +125 q^{-2} +177 q^{-3} -280 q^{-4} -366 q^{-5} -17 q^{-6} +313 q^{-7} +815 q^{-8} -139 q^{-9} -853 q^{-10} -770 q^{-11} -20 q^{-12} +1774 q^{-13} +855 q^{-14} -712 q^{-15} -1910 q^{-16} -1505 q^{-17} +2073 q^{-18} +2368 q^{-19} +746 q^{-20} -2366 q^{-21} -3698 q^{-22} +1000 q^{-23} +3274 q^{-24} +3057 q^{-25} -1488 q^{-26} -5467 q^{-27} -997 q^{-28} +3002 q^{-29} +5172 q^{-30} +266 q^{-31} -6245 q^{-32} -3014 q^{-33} +1950 q^{-34} +6557 q^{-35} +2109 q^{-36} -6208 q^{-37} -4600 q^{-38} +638 q^{-39} +7197 q^{-40} +3709 q^{-41} -5511 q^{-42} -5652 q^{-43} -828 q^{-44} +6975 q^{-45} +4939 q^{-46} -4023 q^{-47} -5826 q^{-48} -2340 q^{-49} +5546 q^{-50} +5354 q^{-51} -1880 q^{-52} -4700 q^{-53} -3280 q^{-54} +3163 q^{-55} +4448 q^{-56} -5 q^{-57} -2607 q^{-58} -2975 q^{-59} +978 q^{-60} +2591 q^{-61} +710 q^{-62} -758 q^{-63} -1754 q^{-64} -46 q^{-65} +964 q^{-66} +474 q^{-67} +48 q^{-68} -664 q^{-69} -147 q^{-70} +216 q^{-71} +121 q^{-72} +121 q^{-73} -170 q^{-74} -38 q^{-75} +36 q^{-76} -3 q^{-77} +47 q^{-78} -36 q^{-79} -2 q^{-80} +10 q^{-81} -9 q^{-82} +10 q^{-83} -7 q^{-84} + q^{-85} +3 q^{-86} -3 q^{-87} + q^{-88} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
| 7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




