10 3: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 10 |
n = 10 |
Line 42: Line 45:
coloured_jones_2 = <math>q^{12}-q^{11}+2 q^9-2 q^8-q^7+3 q^6-3 q^5-q^4+6 q^3-6 q^2-q+9-8 q^{-1} - q^{-2} +9 q^{-3} -7 q^{-4} -2 q^{-5} +9 q^{-6} -5 q^{-7} -4 q^{-8} +8 q^{-9} -3 q^{-10} -4 q^{-11} +5 q^{-12} - q^{-13} -3 q^{-14} +2 q^{-15} - q^{-17} + q^{-18} </math> |
coloured_jones_2 = <math>q^{12}-q^{11}+2 q^9-2 q^8-q^7+3 q^6-3 q^5-q^4+6 q^3-6 q^2-q+9-8 q^{-1} - q^{-2} +9 q^{-3} -7 q^{-4} -2 q^{-5} +9 q^{-6} -5 q^{-7} -4 q^{-8} +8 q^{-9} -3 q^{-10} -4 q^{-11} +5 q^{-12} - q^{-13} -3 q^{-14} +2 q^{-15} - q^{-17} + q^{-18} </math> |
coloured_jones_3 = <math>q^{24}-q^{23}+2 q^{20}-2 q^{19}-q^{18}-q^{17}+4 q^{16}-q^{15}-2 q^{14}-3 q^{13}+5 q^{12}+2 q^{11}-2 q^{10}-5 q^9+3 q^8+4 q^7-q^6-3 q^5+2 q^3+q^2-q- q^{-1} + q^{-2} + q^{-3} - q^{-4} - q^{-6} + q^{-7} + q^{-9} -4 q^{-10} + q^{-11} +4 q^{-12} + q^{-13} -7 q^{-14} - q^{-15} +8 q^{-16} +2 q^{-17} -8 q^{-18} -3 q^{-19} +8 q^{-20} +3 q^{-21} -5 q^{-22} -5 q^{-23} +5 q^{-24} +3 q^{-25} - q^{-26} -4 q^{-27} +2 q^{-28} + q^{-29} -2 q^{-31} + q^{-32} - q^{-35} + q^{-36} </math> |
coloured_jones_3 = <math>q^{24}-q^{23}+2 q^{20}-2 q^{19}-q^{18}-q^{17}+4 q^{16}-q^{15}-2 q^{14}-3 q^{13}+5 q^{12}+2 q^{11}-2 q^{10}-5 q^9+3 q^8+4 q^7-q^6-3 q^5+2 q^3+q^2-q- q^{-1} + q^{-2} + q^{-3} - q^{-4} - q^{-6} + q^{-7} + q^{-9} -4 q^{-10} + q^{-11} +4 q^{-12} + q^{-13} -7 q^{-14} - q^{-15} +8 q^{-16} +2 q^{-17} -8 q^{-18} -3 q^{-19} +8 q^{-20} +3 q^{-21} -5 q^{-22} -5 q^{-23} +5 q^{-24} +3 q^{-25} - q^{-26} -4 q^{-27} +2 q^{-28} + q^{-29} -2 q^{-31} + q^{-32} - q^{-35} + q^{-36} </math> |
coloured_jones_4 = |
coloured_jones_4 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_5 = |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_6 = |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_7 = |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |
computer_talk =
computer_talk =
<table>
<table>
Line 52: Line 55:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[11, 16, 12, 17], X[5, 13, 6, 12], X[3, 15, 4, 14],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[11, 16, 12, 17], X[5, 13, 6, 12], X[3, 15, 4, 14],
Line 72: Line 75:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 3]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_3_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 3]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_3_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 3]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 3]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 1, 2, NotAvailable, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 1, 2, NotAvailable, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 3]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 3]][t]</nowiki></pre></td></tr>

Revision as of 17:48, 31 August 2005

10 2.gif

10_2

10 4.gif

10_4

10 3.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 3 at Knotilus!


Knot presentations

Planar diagram presentation X1627 X11,16,12,17 X5,13,6,12 X3,15,4,14 X13,5,14,4 X15,3,16,2 X7,20,8,1 X9,18,10,19 X17,10,18,11 X19,8,20,9
Gauss code -1, 6, -4, 5, -3, 1, -7, 10, -8, 9, -2, 3, -5, 4, -6, 2, -9, 8, -10, 7
Dowker-Thistlethwaite code 6 14 12 20 18 16 4 2 10 8
Conway Notation [64]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 13, width is 6,

Braid index is 6

10 3 ML.gif 10 3 AP.gif
[{12, 7}, {6, 8}, {7, 5}, {4, 6}, {5, 3}, {2, 4}, {3, 1}, {9, 2}, {8, 10}, {11, 9}, {10, 12}, {1, 11}]

[edit Notes on presentations of 10 3]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 1
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-7][-5]
Hyperbolic Volume 5.7321
A-Polynomial See Data:10 3/A-polynomial

[edit Notes for 10 3's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 3's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 25, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:10 3/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-6, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-101234χ
9          11
7           0
5        21 1
3       1   -1
1      32   1
-1     22    0
-3    12     -1
-5   22      0
-7   1       -1
-9 12        1
-11           0
-131          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials