9 13: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 9 | |
n = 9 | |
||
| Line 40: | Line 43: | ||
coloured_jones_3 = <math>-q^{60}+2 q^{59}-2 q^{57}-3 q^{56}+6 q^{55}+5 q^{54}-8 q^{53}-13 q^{52}+13 q^{51}+20 q^{50}-10 q^{49}-36 q^{48}+11 q^{47}+46 q^{46}-61 q^{44}-9 q^{43}+69 q^{42}+26 q^{41}-79 q^{40}-40 q^{39}+83 q^{38}+55 q^{37}-85 q^{36}-71 q^{35}+87 q^{34}+77 q^{33}-79 q^{32}-89 q^{31}+79 q^{30}+82 q^{29}-60 q^{28}-85 q^{27}+52 q^{26}+71 q^{25}-33 q^{24}-63 q^{23}+24 q^{22}+45 q^{21}-9 q^{20}-36 q^{19}+7 q^{18}+21 q^{17}-16 q^{15}+2 q^{14}+8 q^{13}+q^{12}-6 q^{11}+q^{10}+2 q^9+q^8-2 q^7+q^6</math> | |
coloured_jones_3 = <math>-q^{60}+2 q^{59}-2 q^{57}-3 q^{56}+6 q^{55}+5 q^{54}-8 q^{53}-13 q^{52}+13 q^{51}+20 q^{50}-10 q^{49}-36 q^{48}+11 q^{47}+46 q^{46}-61 q^{44}-9 q^{43}+69 q^{42}+26 q^{41}-79 q^{40}-40 q^{39}+83 q^{38}+55 q^{37}-85 q^{36}-71 q^{35}+87 q^{34}+77 q^{33}-79 q^{32}-89 q^{31}+79 q^{30}+82 q^{29}-60 q^{28}-85 q^{27}+52 q^{26}+71 q^{25}-33 q^{24}-63 q^{23}+24 q^{22}+45 q^{21}-9 q^{20}-36 q^{19}+7 q^{18}+21 q^{17}-16 q^{15}+2 q^{14}+8 q^{13}+q^{12}-6 q^{11}+q^{10}+2 q^9+q^8-2 q^7+q^6</math> | |
||
coloured_jones_4 = <math>q^{98}-2 q^{97}+2 q^{95}-q^{94}+4 q^{93}-8 q^{92}-q^{91}+8 q^{90}-q^{89}+14 q^{88}-25 q^{87}-12 q^{86}+17 q^{85}+8 q^{84}+45 q^{83}-48 q^{82}-43 q^{81}+6 q^{80}+15 q^{79}+115 q^{78}-48 q^{77}-81 q^{76}-44 q^{75}-15 q^{74}+202 q^{73}-q^{72}-80 q^{71}-116 q^{70}-105 q^{69}+262 q^{68}+78 q^{67}-24 q^{66}-173 q^{65}-227 q^{64}+275 q^{63}+149 q^{62}+65 q^{61}-202 q^{60}-340 q^{59}+259 q^{58}+197 q^{57}+148 q^{56}-207 q^{55}-419 q^{54}+227 q^{53}+219 q^{52}+209 q^{51}-189 q^{50}-450 q^{49}+178 q^{48}+205 q^{47}+241 q^{46}-136 q^{45}-418 q^{44}+103 q^{43}+147 q^{42}+238 q^{41}-58 q^{40}-324 q^{39}+36 q^{38}+60 q^{37}+186 q^{36}+11 q^{35}-196 q^{34}+5 q^{33}-11 q^{32}+109 q^{31}+36 q^{30}-92 q^{29}+8 q^{28}-33 q^{27}+47 q^{26}+25 q^{25}-38 q^{24}+13 q^{23}-22 q^{22}+18 q^{21}+10 q^{20}-17 q^{19}+9 q^{18}-9 q^{17}+7 q^{16}+4 q^{15}-7 q^{14}+3 q^{13}-2 q^{12}+2 q^{11}+q^{10}-2 q^9+q^8</math> | |
coloured_jones_4 = <math>q^{98}-2 q^{97}+2 q^{95}-q^{94}+4 q^{93}-8 q^{92}-q^{91}+8 q^{90}-q^{89}+14 q^{88}-25 q^{87}-12 q^{86}+17 q^{85}+8 q^{84}+45 q^{83}-48 q^{82}-43 q^{81}+6 q^{80}+15 q^{79}+115 q^{78}-48 q^{77}-81 q^{76}-44 q^{75}-15 q^{74}+202 q^{73}-q^{72}-80 q^{71}-116 q^{70}-105 q^{69}+262 q^{68}+78 q^{67}-24 q^{66}-173 q^{65}-227 q^{64}+275 q^{63}+149 q^{62}+65 q^{61}-202 q^{60}-340 q^{59}+259 q^{58}+197 q^{57}+148 q^{56}-207 q^{55}-419 q^{54}+227 q^{53}+219 q^{52}+209 q^{51}-189 q^{50}-450 q^{49}+178 q^{48}+205 q^{47}+241 q^{46}-136 q^{45}-418 q^{44}+103 q^{43}+147 q^{42}+238 q^{41}-58 q^{40}-324 q^{39}+36 q^{38}+60 q^{37}+186 q^{36}+11 q^{35}-196 q^{34}+5 q^{33}-11 q^{32}+109 q^{31}+36 q^{30}-92 q^{29}+8 q^{28}-33 q^{27}+47 q^{26}+25 q^{25}-38 q^{24}+13 q^{23}-22 q^{22}+18 q^{21}+10 q^{20}-17 q^{19}+9 q^{18}-9 q^{17}+7 q^{16}+4 q^{15}-7 q^{14}+3 q^{13}-2 q^{12}+2 q^{11}+q^{10}-2 q^9+q^8</math> | |
||
coloured_jones_5 = | |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_6 = | |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_7 = | |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
| Line 49: | Line 52: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 13]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 13]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[16, 8, 17, 7], X[18, 10, 1, 9], |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[16, 8, 17, 7], X[18, 10, 1, 9], |
||
| Line 67: | Line 70: | ||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 13]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_13_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 13]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_13_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 13]]&) /@ { |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 13]]&) /@ { |
||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, {2, 3}, 2, 2, {4, 6}, 1}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, {2, 3}, 2, 2, {4, 6}, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 13]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 13]][t]</nowiki></pre></td></tr> |
||
Revision as of 17:51, 31 August 2005
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 13's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X6271 X14,6,15,5 X16,8,17,7 X18,10,1,9 X8,18,9,17 X10,16,11,15 X2,14,3,13 X12,4,13,3 X4,12,5,11 |
| Gauss code | 1, -7, 8, -9, 2, -1, 3, -5, 4, -6, 9, -8, 7, -2, 6, -3, 5, -4 |
| Dowker-Thistlethwaite code | 6 12 14 16 18 4 2 10 8 |
| Conway Notation | [3213] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{3, 7}, {8, 6}, {7, 5}, {6, 4}, {5, 9}, {2, 8}, {10, 3}, {9, 11}, {1, 10}, {11, 2}, {4, 1}] |
[edit Notes on presentations of 9 13]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 13"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X14,6,15,5 X16,8,17,7 X18,10,1,9 X8,18,9,17 X10,16,11,15 X2,14,3,13 X12,4,13,3 X4,12,5,11 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -7, 8, -9, 2, -1, 3, -5, 4, -6, 9, -8, 7, -2, 6, -3, 5, -4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 12 14 16 18 4 2 10 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3213] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{1,1,1,1,2,-1,2,2,3,-2,3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 7}, {8, 6}, {7, 5}, {6, 4}, {5, 9}, {2, 8}, {10, 3}, {9, 11}, {1, 10}, {11, 2}, {4, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-15} - q^{-17} +2 q^{-21} + q^{-27} - q^{-29} +3 q^{-33} + q^{-35} -3 q^{-37} +2 q^{-39} +3 q^{-41} +3 q^{-43} +2 q^{-45} -4 q^{-47} -11 q^{-49} -5 q^{-51} +8 q^{-53} +20 q^{-55} +19 q^{-57} -3 q^{-59} -31 q^{-61} -41 q^{-63} -17 q^{-65} +37 q^{-67} +76 q^{-69} +55 q^{-71} -22 q^{-73} -105 q^{-75} -120 q^{-77} -24 q^{-79} +126 q^{-81} +195 q^{-83} +100 q^{-85} -107 q^{-87} -264 q^{-89} -210 q^{-91} +54 q^{-93} +305 q^{-95} +313 q^{-97} +39 q^{-99} -299 q^{-101} -394 q^{-103} -148 q^{-105} +245 q^{-107} +429 q^{-109} +237 q^{-111} -158 q^{-113} -408 q^{-115} -294 q^{-117} +54 q^{-119} +337 q^{-121} +315 q^{-123} +28 q^{-125} -245 q^{-127} -282 q^{-129} -94 q^{-131} +139 q^{-133} +235 q^{-135} +129 q^{-137} -59 q^{-139} -174 q^{-141} -144 q^{-143} -9 q^{-145} +115 q^{-147} +159 q^{-149} +67 q^{-151} -91 q^{-153} -167 q^{-155} -104 q^{-157} +60 q^{-159} +199 q^{-161} +152 q^{-163} -59 q^{-165} -232 q^{-167} -192 q^{-169} +37 q^{-171} +268 q^{-173} +258 q^{-175} -16 q^{-177} -292 q^{-179} -309 q^{-181} -38 q^{-183} +295 q^{-185} +368 q^{-187} +106 q^{-189} -254 q^{-191} -395 q^{-193} -189 q^{-195} +181 q^{-197} +388 q^{-199} +258 q^{-201} -75 q^{-203} -334 q^{-205} -308 q^{-207} -38 q^{-209} +241 q^{-211} +304 q^{-213} +128 q^{-215} -122 q^{-217} -258 q^{-219} -188 q^{-221} +15 q^{-223} +178 q^{-225} +193 q^{-227} +66 q^{-229} -84 q^{-231} -159 q^{-233} -110 q^{-235} +14 q^{-237} +102 q^{-239} +103 q^{-241} +35 q^{-243} -44 q^{-245} -79 q^{-247} -49 q^{-249} +8 q^{-251} +44 q^{-253} +42 q^{-255} +10 q^{-257} -17 q^{-259} -26 q^{-261} -15 q^{-263} +5 q^{-265} +13 q^{-267} +8 q^{-269} -2 q^{-273} -5 q^{-275} -2 q^{-277} +3 q^{-279} + q^{-281} - q^{-283} - q^{-289} + q^{-291} + q^{-293} - q^{-295} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} - q^{-8} + q^{-10} +3 q^{-16} + q^{-18} +2 q^{-20} - q^{-24} -2 q^{-28} - q^{-34} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} -2 q^{-14} +4 q^{-16} -8 q^{-18} +17 q^{-20} -20 q^{-22} +32 q^{-24} -42 q^{-26} +56 q^{-28} -58 q^{-30} +70 q^{-32} -70 q^{-34} +69 q^{-36} -46 q^{-38} +30 q^{-40} -40 q^{-44} +74 q^{-46} -114 q^{-48} +130 q^{-50} -153 q^{-52} +148 q^{-54} -140 q^{-56} +120 q^{-58} -87 q^{-60} +52 q^{-62} -12 q^{-64} -18 q^{-66} +47 q^{-68} -72 q^{-70} +80 q^{-72} -78 q^{-74} +70 q^{-76} -62 q^{-78} +46 q^{-80} -30 q^{-82} +21 q^{-84} -12 q^{-86} +6 q^{-88} -2 q^{-90} + q^{-92} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} - q^{-16} +3 q^{-18} +2 q^{-20} -3 q^{-22} +5 q^{-26} +2 q^{-28} -3 q^{-30} + q^{-32} +5 q^{-34} - q^{-36} -2 q^{-38} +5 q^{-40} +3 q^{-42} + q^{-44} +2 q^{-46} +2 q^{-48} -3 q^{-50} -3 q^{-52} -3 q^{-56} -7 q^{-58} -2 q^{-60} +2 q^{-62} -2 q^{-64} -3 q^{-66} + q^{-68} +3 q^{-70} -2 q^{-74} + q^{-76} +2 q^{-78} + q^{-86} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} +2 q^{-18} -3 q^{-20} + q^{-22} +7 q^{-24} -3 q^{-26} + q^{-28} +9 q^{-30} -2 q^{-32} - q^{-34} +7 q^{-36} - q^{-38} - q^{-40} + q^{-44} -3 q^{-46} -6 q^{-48} +2 q^{-50} - q^{-52} -8 q^{-54} +3 q^{-56} +3 q^{-58} -6 q^{-60} +3 q^{-62} +2 q^{-64} -3 q^{-66} +2 q^{-68} + q^{-70} - q^{-72} + q^{-74} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-9} - q^{-11} + q^{-13} - q^{-15} + q^{-17} +3 q^{-21} +2 q^{-23} +2 q^{-25} +2 q^{-27} -2 q^{-33} -2 q^{-37} - q^{-41} - q^{-45} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-18} - q^{-20} + q^{-24} - q^{-26} - q^{-28} +3 q^{-30} +3 q^{-32} - q^{-34} + q^{-36} +6 q^{-38} +4 q^{-40} -2 q^{-42} +3 q^{-44} +10 q^{-46} +2 q^{-48} + q^{-50} +6 q^{-52} +5 q^{-54} -3 q^{-56} -2 q^{-58} -6 q^{-62} -9 q^{-64} -3 q^{-66} -3 q^{-68} -10 q^{-70} -3 q^{-72} +3 q^{-74} -2 q^{-76} -4 q^{-78} +3 q^{-80} +5 q^{-82} - q^{-86} +3 q^{-88} +2 q^{-90} - q^{-92} + q^{-96} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} + q^{-16} - q^{-18} + q^{-22} +3 q^{-26} +2 q^{-28} +3 q^{-30} +2 q^{-32} +2 q^{-34} - q^{-40} -2 q^{-42} -2 q^{-46} - q^{-50} - q^{-52} - q^{-56} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-18} - q^{-22} - q^{-24} + q^{-26} +3 q^{-28} -4 q^{-32} -2 q^{-34} +4 q^{-36} +7 q^{-38} -5 q^{-42} -3 q^{-44} +6 q^{-46} +7 q^{-48} - q^{-50} -6 q^{-52} + q^{-54} +6 q^{-56} +3 q^{-58} -4 q^{-60} -2 q^{-62} +4 q^{-64} +4 q^{-66} -3 q^{-68} -5 q^{-70} + q^{-72} +3 q^{-74} -2 q^{-76} -6 q^{-78} - q^{-80} +4 q^{-82} + q^{-84} -6 q^{-86} -6 q^{-88} +3 q^{-90} +7 q^{-92} -7 q^{-96} -4 q^{-98} +5 q^{-100} +5 q^{-102} - q^{-104} -4 q^{-106} - q^{-108} +3 q^{-110} +2 q^{-112} - q^{-114} - q^{-116} + q^{-120} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-18} - q^{-20} + q^{-22} -2 q^{-24} +3 q^{-26} -4 q^{-28} +4 q^{-30} -3 q^{-32} +7 q^{-34} -3 q^{-36} +6 q^{-38} - q^{-40} +8 q^{-42} + q^{-44} + q^{-46} +3 q^{-48} -2 q^{-50} +7 q^{-52} -7 q^{-54} +7 q^{-56} -10 q^{-58} +10 q^{-60} -10 q^{-62} +7 q^{-64} -11 q^{-66} +4 q^{-68} -6 q^{-70} + q^{-72} -4 q^{-74} -2 q^{-76} +2 q^{-78} -3 q^{-80} +4 q^{-82} -5 q^{-84} +6 q^{-86} -5 q^{-88} +4 q^{-90} -4 q^{-92} +4 q^{-94} -2 q^{-96} +2 q^{-98} - q^{-100} + q^{-102} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} - q^{-32} +2 q^{-34} -3 q^{-36} +2 q^{-38} - q^{-40} -2 q^{-42} +7 q^{-44} -8 q^{-46} +11 q^{-48} -9 q^{-50} +4 q^{-52} +4 q^{-54} -12 q^{-56} +19 q^{-58} -20 q^{-60} +17 q^{-62} -8 q^{-64} -4 q^{-66} +18 q^{-68} -22 q^{-70} +23 q^{-72} -13 q^{-74} + q^{-76} +10 q^{-78} -15 q^{-80} +13 q^{-82} - q^{-84} -8 q^{-86} +22 q^{-88} -18 q^{-90} +6 q^{-92} +13 q^{-94} -27 q^{-96} +36 q^{-98} -32 q^{-100} +16 q^{-102} +4 q^{-104} -21 q^{-106} +34 q^{-108} -36 q^{-110} +24 q^{-112} -9 q^{-114} -11 q^{-116} +18 q^{-118} -22 q^{-120} +14 q^{-122} -2 q^{-124} -10 q^{-126} +15 q^{-128} -14 q^{-130} +2 q^{-132} +12 q^{-134} -24 q^{-136} +24 q^{-138} -17 q^{-140} + q^{-142} +13 q^{-144} -23 q^{-146} +26 q^{-148} -20 q^{-150} +9 q^{-152} +2 q^{-154} -12 q^{-156} +14 q^{-158} -12 q^{-160} +9 q^{-162} -3 q^{-164} - q^{-166} +3 q^{-168} -4 q^{-170} +3 q^{-172} - q^{-174} + q^{-176} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 13"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 37, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 13"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-9 t+11-9 t^{-1} +4 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{11}+2 q^{10}-4 q^9+5 q^8-6 q^7+7 q^6-5 q^5+4 q^4-2 q^3+q^2} } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (7, 18) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 9 13. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{31}-2 q^{30}+6 q^{28}-7 q^{27}-4 q^{26}+17 q^{25}-12 q^{24}-13 q^{23}+29 q^{22}-13 q^{21}-24 q^{20}+38 q^{19}-10 q^{18}-31 q^{17}+39 q^{16}-6 q^{15}-28 q^{14}+28 q^{13}-q^{12}-18 q^{11}+14 q^{10}+q^9-8 q^8+5 q^7+q^6-2 q^5+q^4} |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{60}+2 q^{59}-2 q^{57}-3 q^{56}+6 q^{55}+5 q^{54}-8 q^{53}-13 q^{52}+13 q^{51}+20 q^{50}-10 q^{49}-36 q^{48}+11 q^{47}+46 q^{46}-61 q^{44}-9 q^{43}+69 q^{42}+26 q^{41}-79 q^{40}-40 q^{39}+83 q^{38}+55 q^{37}-85 q^{36}-71 q^{35}+87 q^{34}+77 q^{33}-79 q^{32}-89 q^{31}+79 q^{30}+82 q^{29}-60 q^{28}-85 q^{27}+52 q^{26}+71 q^{25}-33 q^{24}-63 q^{23}+24 q^{22}+45 q^{21}-9 q^{20}-36 q^{19}+7 q^{18}+21 q^{17}-16 q^{15}+2 q^{14}+8 q^{13}+q^{12}-6 q^{11}+q^{10}+2 q^9+q^8-2 q^7+q^6} |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{98}-2 q^{97}+2 q^{95}-q^{94}+4 q^{93}-8 q^{92}-q^{91}+8 q^{90}-q^{89}+14 q^{88}-25 q^{87}-12 q^{86}+17 q^{85}+8 q^{84}+45 q^{83}-48 q^{82}-43 q^{81}+6 q^{80}+15 q^{79}+115 q^{78}-48 q^{77}-81 q^{76}-44 q^{75}-15 q^{74}+202 q^{73}-q^{72}-80 q^{71}-116 q^{70}-105 q^{69}+262 q^{68}+78 q^{67}-24 q^{66}-173 q^{65}-227 q^{64}+275 q^{63}+149 q^{62}+65 q^{61}-202 q^{60}-340 q^{59}+259 q^{58}+197 q^{57}+148 q^{56}-207 q^{55}-419 q^{54}+227 q^{53}+219 q^{52}+209 q^{51}-189 q^{50}-450 q^{49}+178 q^{48}+205 q^{47}+241 q^{46}-136 q^{45}-418 q^{44}+103 q^{43}+147 q^{42}+238 q^{41}-58 q^{40}-324 q^{39}+36 q^{38}+60 q^{37}+186 q^{36}+11 q^{35}-196 q^{34}+5 q^{33}-11 q^{32}+109 q^{31}+36 q^{30}-92 q^{29}+8 q^{28}-33 q^{27}+47 q^{26}+25 q^{25}-38 q^{24}+13 q^{23}-22 q^{22}+18 q^{21}+10 q^{20}-17 q^{19}+9 q^{18}-9 q^{17}+7 q^{16}+4 q^{15}-7 q^{14}+3 q^{13}-2 q^{12}+2 q^{11}+q^{10}-2 q^9+q^8} |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
| 7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




